能够产生稀有鞘氨碱(例如鞘氨酸和鞘氨酸)的微生物菌株的有效识别对于推进微生物发酵过程和解决工业需求的增加至关重要。wickerhamomyces ciferrii是一种非惯性酵母,自然会过量产生四乙酰基植物磷酸盐(TAPS);但是,其他有价值的鞘氨素碱基的产生,包括鞘氨醇,鞘氨酸和三乙酰基鞘氨醇,仍然是一个关键目标。在这项研究中,我们开发了一种新型的筛选方法,利用氟钠钠(一种选择性的荧光染料,它特异性地与非乙酰化的鞘氨酸鞘氨酸碱(鞘氨酸,鞘氨醇和植物磷酶)反应,同时对TAPS没有反应性。通过伽马射线诱变产生了W. ciferrii的突变库,并使用荧光激活的细胞分选(FACS)进行筛选。通过三轮分类分离出表现出高荧光强度的突变体,表明非乙酰化或部分乙酰化的鞘氨醇化碱基的产生,并通过HPLC分析进一步验证。这种方法成功地识别了三种突变菌株:P41C3(产生鞘氨酸),M01_5(鞘氨碱产生)和P41E7(产生三乙酰基肾上腺素产生)。中,p41c3突变体在摇动培养过程中达到了36.7 mg/l的鞘氨酸滴度,并伴随着TAPS产生的显着降低,表明代谢量的重定向。这项研究证明了荧光素钠作为用于鞘脂基碱产生菌株的选择性筛选染料的实用性,并为W. ciferrii代谢工程建立了有效的平台,以增强工业上重要的鞘脂的产生。
摘要 目的 对中风相关视力障碍的研究报告不一致。本研究旨在为中风研究中的中央视力障碍、视野丧失和眼球运动障碍定义三个核心结果集 (COS) 和相关核心结果测量 (COM)。 设计 达成共识的过程包括在线三轮德尔菲调查,然后是主要利益相关者的共识会议。 设置 英国范围的调查。 参与者 利益相关者包括斜视矫正师、职业治疗师、眼科医生、中风幸存者和 COS 用户,如研究人员、期刊编辑和指南开发者。 结果测量 对于 COS 的开发,在审查文献后创建了一份潜在相关视觉结果的列表,并进一步分组到结果领域中。对于 COM 的开发,在审查文献并评估其可靠性和有效性后创建了一份潜在工具的列表。 结果 COS——从已发表的文献中提取的 119 个潜在结果。相似的评估结果被分为 24 个结果领域。德尔菲法第一轮包括 123 名参与者,第二轮包括 65 名参与者,第三轮包括 51 名参与者。12 名参与者参加了共识会议,并针对中央视力障碍(视力、功能性视力、生活质量)、视野丧失(视野、功能性视力、生活质量)和眼球运动障碍(眼球对准、眼球运动、功能性视力、生活质量)提出了推荐的结果领域。COM——从 COS 结果中提取的 52 个测试选项,分为 16 个领域。13 名参与者参加了 COM 共识会议。用于测量这些结果的推荐工具包括:最小分辨角对数视力、遮盖测试、基点位置眼球运动评估、周边视野视野检查、视觉功能问卷-25。结论 COS 和 COM 是为中风幸存者的视力研究而定义的。它们的使用有可能减少常规临床实践中的异质性,并提高视力评估的标准化和准确性。未来的研究需要评估这些 COS 和 COM 的使用情况。
摘要 综合格斗 (MMA) 是一项间歇性运动,对体力和智力要求很高。支持训练、比赛和减重的营养策略对于优化表现非常重要。一种可能对 MMA 有益的增能剂是肌酸一水化合物。本叙述性综述的目的是 (1) 讨论肌酸补充剂如何影响 MMA 表现;(2) 概述肌酸补充剂对身体成分的影响并强调减重时的具体策略;(3) 讨论如何在称重后使用肌酸来增强补水和糖原再合成;(4) 评估肌酸补充剂的潜在认知益处;(5) 讨论考虑肌酸补充剂时的实际现实策略和注意事项。关键词:大脑健康、补充剂、表现、一水肌酸、战斗 2020 年 1 月 23 日 通讯作者:Tony Ricci,tony@fightshape.net 简介 综合格斗 (MMA) 是一项格斗运动,自终极格斗冠军赛 (UFC) 成立以来,其受欢迎程度日益提升 1 。MMA 涉及各种武术学科的技术,包括拳击、踢拳、巴西柔术、空手道、柔道、泰拳、摔跤等 2,3 。MMA 比赛范围从三轮(常规比赛)到五轮(竞赛比赛),每轮五分钟,各轮之间休息一分钟 3 。根据总比赛时间(~15-25 分钟),生理需求主要由氧化磷酸化支持 4,5 ;但是,由于间歇性和所需的爆发性动作,无氧途径也很重要 3,5,6 。例如,MMA 的特点是爆发性爆发的高强度短时间动作(例如打击和擒拿)与低强度动作相结合 3,5 。这些短期高强度的爆发性动作通常与比赛的成功有关 3,6 。除了肌肉和代谢需求之外,MMA 还需要战术策略,因此需要高水平的认知活动和功能 7 。MMA 运动员必须能够快速处理信息、对对手做出反应、做出战略决策(即执行功能),并拥有适应良好的短期和长期记忆 7 。为了满足 MMA 的身体和认知需求,运动员必须有适当的营养支持策略 8,9 。
2024国家DERA项目的指南提案移动源占烟雾形成空气污染(NOX和挥发性有机化合物)的86%,康涅狄格州占颗粒污染(颗粒物)的16%。为了解决这一污染,能源与环境保护部(深)致力于支持减少柴油机和康涅狄格州其他车辆的排放影响的项目,尤其是在受柴油相关空气污染影响不成比例的地区。今年,美国环境保护局(EPA)将根据《联邦柴油机减少法案》(DERA)(DERA)授权授权康涅狄格州至少398,782.00美元,以减少该州柴油污染的项目。此外,Deep还提供了前2021年和2023年DERA回合的剩余资金,其中包括康涅狄格州大众汽车柴油发射缓解计划(VW计划)下的“ DERA选项”的资金;这可能会将总数增加到1,028,684.04美元。Deep正在寻求从市政当局,组织和企业进行柴油排放项目的赠款建议,这些项目可以迅速发起,并在环境和经济上有益,并将在2026年8月31日之前完成。最新的计划要求更改适用于2023年:康涅狄格州公司和有限责任实体必须及其申请,即状态信/良好的信誉证书,可从税收服务部获得。此外,所有申请人都必须在过去三年内披露任何有效诉讼。EPA还补充了一个要求,成功的受赠人提交了资格声明,以证明将设备的所有权,用法和剩余的寿命替换为该计划的资格要求。这些新要求包含在第六部分,条款和条件和VIII部分,EPA资格声明中,需要签名。申请人应意识到,Deep已完成了康涅狄格州大众柴油发射缓解计划1的三轮项目招标,并将在将来寻求大众资金的其他建议。大众计划资金将在未来五年内提供,或者直到资金用尽,以初次发生的资金,以资助氧化氮(无X)缓解项目,包括减少柴油排放项目。大众计划下的激励措施可能比DERA计划下的慷慨大方。但是,许多有资格获得州DERA计划的干净柴油项目不符合大众计划资助。清洁柴油项目有资格获得州DERA的资金资金,以在为2024 DERA资金的项目选择项目时优先考虑零尾式排放和海洋建议。
[P1] T. M. R. Wolf和C. Huang,“准玻色子近似在2D电子气体中产生准确的相关能量”,《物理评论研究》 6,033296(2024)。[P2] Y. Zeng,T。M. R. Wolf,C。Huang,N。Wei,S。A.A. Ghorashi,A。H。MacDonald和J. Cano,“超晶格调制双层石墨烯中的闸门可调拓扑阶段”,物理评论B 109,195406(2024)。[P3] C.[P4] W. Qin,C。Huang,T。M。R. Wolf,N。Wei,I。Blinov和A. H. MacDonald,“菱形三轮烯石墨烯中超导的功能重新归一化小组研究”,物理评论的物理评论信件130,146001(2023)。[P5] T. M. R. Wolf,M。F. Holst,M。Sigrist和J. L. Lado,“零零件材料中竞争相互作用的非职业多梁超导性”,《物理评论研究4》,L012036(2022)。[P6] T. M. R. Wolf,O。Zilberberg,G。Blatter和J. L. Lado,“磁性封装的扭曲的双层石墨烯中的自发山谷螺旋”,物理。修订版Lett。 126,056803(2021)。 [P7] T. M. R. Wolf,“扭曲层石墨烯系统的电子特性”,10.3929/ethz-b-000475934,博士学位论文(Eth Zurich,2021)。 [P8] T. M. R. Wolf,J。L. Lado,G。Blatter和O. Zilberberg,“扭曲的双层石墨烯中的电气可调式平坦带和磁性”,物理。 修订版 Lett。 123,096802(2019),Arxiv:1905.07651。 修订版 Lett。 122,126802(2019)。 修订版Lett。126,056803(2021)。[P7] T. M. R. Wolf,“扭曲层石墨烯系统的电子特性”,10.3929/ethz-b-000475934,博士学位论文(Eth Zurich,2021)。[P8] T. M. R. Wolf,J。L. Lado,G。Blatter和O. Zilberberg,“扭曲的双层石墨烯中的电气可调式平坦带和磁性”,物理。修订版Lett。 123,096802(2019),Arxiv:1905.07651。 修订版 Lett。 122,126802(2019)。 修订版Lett。123,096802(2019),Arxiv:1905.07651。修订版Lett。 122,126802(2019)。 修订版Lett。122,126802(2019)。修订版[P9] A. Strkalj,M。S。Ferguson,T。M。R. Wolf,I。Levkivskyi和O. Zilberberg,“进入有限的Luttinger液体液体耦合到嘈杂的电容铅的隧道”,Phys。[P10] T. M. R. Wolf,O。Zilberberg,I。Levkivkskyi,G。Blatter,I。Levkivskyi和G. Blatter,“底物诱导的石墨烯中底物诱导的拓扑小键”,Phys。B 98,125408(2018),Arxiv:1805.10670。
明智的网格和可再生能源实验室(SRGE),技术学院,塔里·穆罕默德·贝哈尔大学,阿尔及利亚,阿尔及利亚(1)加西大学,加西大学,工程教师,电气电子工程师,安卡拉,安卡拉(Ankara)可持续城市运输摘要的电子示威者。许多现代电动汽车使用混合储能系统,结合了多种能源。由于它们的快速充电和放电周期,高功率密度,寿命比电池的寿命更长以及对压力的抵抗,因此超级电容器(SC)是与电池结合使用时HESS的最佳选择。为了提高电动汽车的独立性,SC在突然的功率变化过程中用作储能设备并恢复制动能量。在本文中,通过在制动或反卸载过程中提供负载和功率恢复所需的功率来实施速度管理策略,以提高电动踏板车的性能。这种策略依赖于所谓的开/关控制技术来测量SC和电池的功率共享。为了评估电动踏板车控制策略的有效性和在不同负载下的系统能量管理的有效性,已经创建了MATLAB/SIMULINK模型。调查结果表明,使用超级电容器可以减轻放置在电池上的电压。Streszczenie。wiele nowoczesnychpojazdówElektrycznychu imwa hybrydowychsystemówmagazynowania energii,które生。taktyka opierasięnatak zwanej技术kontroli on/off o do do pomiaru pomiarupodziałuMocysc i baterii。由于快速充电和放电周期,高功率密度,工作周期更长的电池和抵抗力,超级电容器(SC)是HESS与电池结合的最佳解决方案。为了提高电动汽车的独立性,SC在功率突然变化并恢复制动能量的过程中用作储能设备。在本文档中,通过确保在制动或过载过程中确保从负载和功率恢复中获得必要的功率来实施速度管理策略,以提高电气踏板车的效率。为了评估电气踏板车控制策略和系统能量管理在各种负载下的有效性,创建了MATLAB/SIMULINK模型。结果表明,超级电容器的使用舒缓电池上的电载荷。(使用电池和超级电视机进行电池和超级电容器的开创性混合能源管理,用于可持续城市运输)关键词:踏板车电动机,BLDC电机,锂离子电池,超级电容器关键字:电动踏板车,BLDC Engine,Bldc Engine,Lithium lithium lithium简介电动汽车(EV)是针对环境问题和化石燃料繁殖的最重要的解决方案之一,尤其是在城市地区,内部组合发动机(ICE)供应的车辆供应大量[1-2]。在众多亚洲国家中,三轮车辆和踏板车是卫生威士忌,并被认为是最具成本效益的运输方式。这些车辆已经获得了引人注目的态度[4-5]。在城市环境中,它们经常被用作短距离的运输方式,以绕过交通拥堵的目的[3]。在过去的几年中,在轻型电动汽车的领域进行了大量研究,包括三轮车和电动踏板车。尽管如此,电动汽车(EVS)目前在储能系统(ESS)(ESS)中遇到与安全,规模,成本和管理控制问题有关的挑战[7]。电动汽车(EV)的主要组件是储能系统(ESS),该系统通常使用电池,例如镍金属氢化物(NIMH),铅酸和锂离子。然而,配备电池的电动汽车(称为B-EVS)确实具有某些缺点,包括受限的驾驶范围,相对短暂的电池周期寿命以及功率密度降低。为了应对上述挑战[6],除了在存储设备技术方面的进步外,还必须考虑混合储能系统(HESS)的实施。HESS依赖于两个或多个能源的组合,每个能源具有不同的特征[8]。超级电容器是混合拓扑中使用的另一种储能装置。它被用作额外的力量来源,主要是因为它具有高功率密度和较长的周期寿命[8-9]。因此,超级电容器可用于以下四个原因中的一个或多个,在电动汽车的混合动力系统中使用[10]: