摘要Canary/Iberia地区(CIR)是加那利河流上升流系统的一部分,以其沿海生产率和通过上升沿海沿海水域的近海运输而富含贫营养的开阔海洋而闻名。鉴于其重要的生态和社会经济重要性,必须评估气候变化对该领域的影响至关重要。因此,这项研究的目的是使用由RCP8.5方案下的地球系统模型MPI-ESM-LR驱动的高分辨率区域气候系统模型分析CIR上的气候变化信号。该建模系统介绍了一个区域大气模型,该模型与全球海洋模型相结合,并在CIR中提供了足够的水平分辨率,以检查上升流利的风和海洋分层的作用,这是将来的关键因素。CIR在RCP8.5场景下对气候变化的响应表现出明显的纬度和季节性变异性,海洋分层和风模式将扮演互补和竞争角色。海洋分层将从本世纪末从直布罗陀的海峡到朱比角增加,从而削弱了整年的沿海上升流。分层的增加与北大西洋表面层的清新有关。然而,风模式的修改将在冬季最南端的CIR最南端和夏季伊比利亚半岛北部的源水深变化中起主要作用。风模式的变化与冬季的亚速尔群岛的强化以及夏季的伊比利亚热较低的加深有关。
基于高分辨率湍流微结构和近地表速度数据,研究了本格拉上升流系统(东南大西洋)中瞬态上升流细丝内的锋面不稳定性及其与湍流的关系。我们的研究重点是位于细丝边缘的尖锐亚中尺度锋面,其特点是持续的下锋风、强劲的锋面急流和剧烈的湍流。我们的分析揭示了三种不同的锋面稳定状态。(i)在锋面的浅侧,发现了一个 30-40 米深的湍流表面层,具有低位势涡度 (PV)。这个低位势涡度区域呈现出明确的两层结构,上层为对流(埃克曼强迫),下层为稳定分层,其中湍流由强迫对称不稳定性 (FSI) 驱动。该区域的耗散率与埃克曼浮力通量成比例,与 FSI 的最新数值模拟具有很好的定量一致性。(ii)在锋面喷射的气旋侧翼内,靠近横向锋面密度梯度的最大值,气旋涡度足够强,可以抑制 FSI。该区域的湍流是由边缘剪切不稳定性驱动的。(iii)在锋面喷射的反气旋侧翼内,混合惯性/对称不稳定性的条件得到满足。我们的数据为 FSI、惯性不稳定性和边缘剪切不稳定性与亚中尺度锋面和细丝中整体动能耗散的相关性提供了直接证据。