氯化铁(FECL 3)被广泛用于污水处理过程中,并通过留在废物激活的污泥中(WAS)来影响厌氧消化过程。然而,厌氧消化系统涉及的FECL 3(FC)的效果和机制尚未彻底阐明。在这项研究中,评估了FC作为痕量元素的利用来增强厌氧共消化的甲烷产生。此外,还研究了FC添加的不同效果和潜在的机制在WAS的每个关键阶段和食物废物(FW)厌氧共消化中。发现FC增强了高达50.74%的甲烷产生,最大值在300 mg-fc/l的剂量下获得。fc促进了溶解度,水解和酸化可能是通过异化性铁还原过程促进的,因为FC可以用作电子受体,以加速WAS和FW复合有机物的分解和降解,并接受中间体电子以刺激氨基酸和单糖酸盐酸中乙酸的杀菌剂。然而,FC以高剂量浓度抑制甲烷的产生,这归因于铁的毒性和挥发性脂肪酸的积累并降低pH。酶促分析表明,FC添加增加了淀粉酶活性,这是一种重要的水解酶,也降低了滞后相。总体而言,这项研究有助于更好地理解整合到WAS和FW厌氧共同消化中的FC机制,并为优化能源/碳恢复的途径奠定了基础。
科学硕士人类发展每年导致数十亿吨废物,这导致了诸如污染,气候变化和栖息地破坏等重大问题。在这项研究中,我们探讨了细菌接种对不同底物处理下厌氧消化器中挥发性脂肪酸(VFA)产生,挥发性固体(VS)和气输出的影响。我们的结果表明,细菌接种显着提高了VFA水平,尤其是乙酸,caldicellulosiruptor bescii和混合的caldicellulosiruptor均显着提高VFA水平,与对照组相比,培养物具有显着差异,尤其是在未经处理的肥料中,并且是治疗方法。乙酸和VS/TS在未处理的情况下增加是在1天后与C. bescii接种时,然后才能达到稳态。未经处理的肥料阶段表明从MHP的第0天到第1天,乙酸产生和VS/TS显着降低,反映了有效的底物降解和最佳的厌氧消化启动。CB和混合接种物的气体产量较高,在未经处理的IS和肥料中表现优于控制样品。另一方面,经过的AD肥料和肥料在VFA,VS/TS和跨越气体产量中的变化最小。总体而言,我们的发现强调了细菌接种在增强厌氧消化性能,改善VFA产生,气输出和VS/TS方面的有效性,并建议有针对性的微生物策略可以显着优化消化过程。
摘要:动物粪便的厌氧消化导致可再生能量(沼气)和富含营养的生物肥料的产生。该技术的进一步好处是减少了肥料储存过程中否则会发生的温室气体排放。由于动物粪便使厌氧的消化成本效益并进一步推进了较高甲烷产量的技术,因此最重要的是,要找到改善瓶颈的策略至关重要鸡肉,鸭子或猪粪。本综述总结了不同动物粪便的特征,并洞悉了潜在的微生物机制,从而导致厌氧消化过程引起挑战性问题。在高氨气过程中的保留时间和有机负荷速率放在了高氨气中的保留时间和有机负荷速率上,应设计和优化,以支持耐受高氨疾病的微生物,例如酸性乙酸乙酸替代性乙酸氧化细菌和氢蛋白毒素。此外,总结了用于稳定和增加动物粪便的甲烷产量的运营管理,包括支撑物质,添加微量元素或掺入氨去除技术。审查是最终的,讨论了概述动物粪便厌氧消化过程的可疑操作方法所需的研究,以规避过程不稳定性并改善过程性能。
摘要 具有木质素解聚、分解代谢或两者兼有能力的新型细菌分离物可能与木质纤维素生物燃料应用有关。在本研究中,我们旨在识别能够解决微生物介导的生物技术所面临的经济挑战(例如需要曝气和混合)的厌氧细菌。利用从温带森林土壤中接种并在缺氧条件下以有机溶剂木质素作为唯一碳源进行富集的菌体,我们成功分离出一种新型细菌,命名为 159R。根据 16S rRNA 基因,该分离物属于 Bruguierivoracaceae 科的 Sodalis 属。全基因组测序显示基因组大小为 6.38 Mbp,GC 含量为 55 mol%。为了确定 159R 的系统发育位置,使用 (i) 其最亲属的 16S rRNA 基因、(ii) 100 个基因的多位点序列分析 (MLSA)、(iii) 49 个直系同源群 (COG) 结构域簇和 (iv) 400 个保守蛋白质重建了它的系统发育。分离株 159R 与枯木相关的 Sodalis 行会密切相关,而与采采蝇和其他昆虫内共生体行会关系较弱。估计的基于基因组序列的数字 DNA-DNA 杂交 (dDDH)、基因组保守蛋白质百分比 (POCP) 以及 159R 与 Sodalis 进化枝物种之间的比对分析进一步支持分离株 159R 属于 Sodalis 属的一部分和 Sodalis ligni 的一个菌株。我们建议将之命名为 Sodalis ligni str。 159R (=DSM 110549 = ATCC TSD-177)。
比较了在含有 D-葡萄糖 (12.5 mM) 和 D-木糖 (12.5 mM) 的发酵培养基中生长的野生型和适应性进化的 BL21(DE3) 菌株的 xylA 和 xylF 基因 (分别编码木糖异构酶和木糖 ABC 转运蛋白) 的表达水平。与 BL21(DE3) 相比,JH001 菌株中 xylA 和 xylF 基因的表达分别上调了 11 倍和 3 倍。同样,在 JH019 菌株中,xylA 和 xylF 基因的表达水平与野生型菌株相比分别增加了 5 倍和 2 倍 (图 4A)。当每种菌株在仅含有 D-木糖 (25 mM) 的发酵培养基中生长时,JH001 和 JH019 细胞的 xylA 和 xylF 基因转录水平显著升高,至少比野生型 BL21(DE3) 菌株高出 5 倍(图 4B)。这些结果表明,D-木糖运输和代谢酶在携带 xylR 适应性突变的适应性 BL21(DE3) 细胞中高度表达。
作者乔恩·施罗德(Jon Schroeder),美国环境保护署(EPA),华盛顿特区致谢EPA愿意感谢所有为本报告提供数据的设施运营商。这些人不仅提供了数据,而且在许多情况下,他们还花了一些时间与EPA交谈并澄清提供的数据。EPA极大地赞赏他们的所有努力。如果没有宝贵的意见,就无法生成此报告。我们希望本报告中提供的信息对所有设施运营商和行业都有用。以下人员通过在调查设计和测试,数据分析或报告评论方面的协助下为该报告做出了贡献:Chris Carusiello,Lana Suarez,Melissa Pennington,Nancy Abrams,Ksenija Janjic和Juliana Beecher。文档审查该文档的技术同行评审由:Alexandra Stern博士提供。美国EPA Beau Hoffman技术经理研究与开发办公室,转换R&D生物能源技术办公室,美国能源质量保证EPA EPA对本报告中用于生成信息的数据和计算进行了严格的质量保证审查。检查了所有关键数据点的离群值,对单位进行了评估以确保准确性,并将特定的数据点比较某些条件的测试(例如,报告的容量大于所报道的已处理的原料量)。在许多情况下,用假设纠正了异常,这些假设将进一步规定。本报告中提到的公司未经美国EPA认证或批准。免责声明仅出于信息目的提供厌氧消化设施及其位置。EPA不能保证此信息的准确性或完整性。
关键词:缺乏洞察力,精神病,精神分裂症,双相情感障碍,机构歧视,评论厌氧症的神经系统症状,在50%至80%的人中,患有精神分裂症和其他精神疾病的患者发生,这是接受生命为生命的医疗护理的初级障碍。Anosognosia剥夺了一个人认识到自己生病的能力,并可以阻止照顾者和家庭为亲人获得治疗。尽管患有严重精神疾病(SMI)的个体中的厌氧症率令人震惊,但医学界几乎没有承认这种残酷症状。医学研究中这种陈述的结果是没有治疗方法。数十年的忽视和不集会造成了系统的机构歧视和精神卫生系统,旨在使患者失败。临床试验需要患者同意和对疾病的认识。抗精神病药物仅在一小部分的精神病患者中进行了研究,他们意识到自己生病并且可以使他们的症状交往 - 本质上是幻觉的人,他们意识到自己正在幻觉。数十年的药物开发产生了数十种抗精神病药,这些抗精神病药可治疗幻觉,但对患者洞察力或总体上的负面症状无济于事。精神分裂症的复杂性对于研究人员来说是如此挑战,以至于大多数临床试验都失败了,只有20%至30%的患者表现出对安慰剂的显着改善。2
这些标题:一种熟食消化成有机c har/ c危害暴风雨管理(精确)论文方向:Claire Gerente(Pron) + Marco Baratieri(Unibz)Co-enstécadrant:Audrey Villot(IMTA)研究团队:团队和绿色IMT大西洋部:DSEE是国际共同所有权的论文吗?是的,如果是的,则设想与沿海的有机体:拟议的主题Unibz具有跨学科的特征?是的,这个博士学位项目旨在支持Biochar/Char的知识,作为媒体,旨在返回地面。这必然要求了解生物量转化过程(生物学,热化学),也需要对城市径流中存在的污染物的吸附剂的多孔材料的表征,并支持植物生长(水保留能力,营养井等)。这些研究的目的是在城市规模上增加产品和流的循环。是否确定了共同融资的来源?是的,如果是,请指定设想哪种共同融资:中产阶级pri +semi-Bourse unibz其他信息:您希望传达的有用信息(如果相关):
摘要:不断增长的世界人口意味着对地球资源的压力更大。目前,浪费了30%的食物,这对人类和环境都带来了重大风险。通过微生物生物转化的过程来抵消食物浪费(FW)的生长的一种方法,从而将FW转化为一系列营养密集的生物含量。这种方法不仅促进了高度理想的循环经济,而且还可以减少无机肥料的使用,从而通过增加的温室气体,土壤和水特征的变化以及生物多样性的丧失对环境产生不利影响。FW对生物肥料的生物转化依赖于有氧(堆肥)和厌氧消化的过程。最近,替代分解技术包括生长的特定有益微生物,例如有效的微生物,以加快崩溃过程。微生物可以充当生物刺激剂和生物成分,具有固定能力,并提供避免双重和非生物胁迫的保护,从而增强了植物的生长和整体健康。FW的潜在用途是复杂且多样的,但是进行了积极的研究,以有效地利用此资源来实现BioFertiliser应用程序。
食物垃圾(FW)的热液预处理已成为一种有希望的策略,以增强用污泥的厌氧共同消化的性能。全球人口和经济活动不断升级导致市政固体废物(MSW)产生激增,带来了重大的环境挑战(Chuen Chen等人。2020)。在人口稠密的城市中,诸如香港的人均FW的产量为0.30 kg/天,而污水污泥(SS)的价格超过0.16千克/天(HKEPD 2019)。在香港产生的11,057吨/天的11,057吨的30.0%包括FW,SS的产量达到约1,052吨/天约为1,052吨(EPD 2021)。鉴于FW在香港的MSW组成中的主要存在,政府提议利用现有污水处理厂的盈余AD容量进行FW/SS共同消化,与单消化相比提供了较高的好处(Mehariya等人。2018)。因此,迫切需要通过有效的厌氧共同消化实践来增强FW和SS的处理,以减轻不利的环境和社会影响。厌氧消化被认为是通过富含甲烷的沼气生产的同时废物处理和能量回收的可行方法(Johnravindar等人。2022)。fw的特征是其高水分含量和降解性,是AD的理想基板。然而,AD在FW和SS中的独立应用面临挑战,例如高机载荷,快速酸化,延长的固体保留率以及抑制物质的存在。2020)。2020)。因此,废水处理厂的污泥中包含大量的重金属,病原体和细菌(Kaur等人。AD涉及一系列的生物学过程,这些过程在没有氧气的情况下通过微生物作用将复杂的底物转化为沼气,其中包括水解,酸生成,乙酰发生和甲烷发生。水解通常是由于形成有毒副产品或不良挥发性脂肪酸(VFAS)而导致复杂有机基质的速率限制步骤(VFAS),而甲烷生成会对易于生物降解的底物产生限制(Kaur等人,在这种情况下,已显示FW和SS的厌氧共同消化可提高消化效率并优化