ARIES PAR - 精密进近雷达 该雷达用于支持飞机进近和着陆机动,通常与空中监视雷达一起使用。飞机最初由 ARIES- SAAS 监视雷达在远距离探测,并由空中管制员路由到 ARIES PAR 的覆盖区域,以便沿下滑道引导。当PAR雷达向管制员提供飞机着陆阶段控制和引导信息时,监视雷达则负责搜寻其他来袭飞机。
AFIS 模拟飞行仪表系统(新西兰航空公司用来区分‘传统’和‘玻璃’驾驶舱的通用术语) AFDS 自动驾驶仪飞行指引系统 AGL 地平面以上 A/P 自动驾驶仪 APP 自动飞行系统进近模式 AQD 航空质量数据库 ARINC 航空无线电公司 ASA 自动着陆状态信号器 A/T 自动油门 ATC 空中交通管制 CAANZ 新西兰民航局 Capt 机长 类别 CRM 机组资源管理 CDU 控制显示单元 CFIT 可控飞行撞地 CSB 载波加边带 CVR 驾驶舱语音记录器 DDM 调制深度差 DME 测距设备 EADI 电子姿态指示器 EFI 电子飞行仪表 EFIS 电子飞行仪表系统 EGPWS 增强型近地警告系统 EHSI 电子水平状况指示器 ETA 预计到达时间 ETD 预计离场时间 FA Faleolo VOR FAF 最后进近定位点 FAP 最后进近点FCC 飞行控制计算机 FCTM 飞行机组训练手册 FD 飞行指引器 FDR 飞行数据记录器 FMC 飞行管理计算机 FMCS 飞行管理计算机系统 F/O 副驾驶 FOQA 飞行运行质量保证 GPWS 近地警告系统 GP 下滑道(通常参考地面发射器时使用) G/S 下滑道(通常参考飞机仪表、接收器或机组程序时使用)
飞行员决定终止飞行,并告知空中交通管制部门她的意图。在转向基准航段并降低空速后,飞行员发现尽管施加了更多的机头上调配平,但机头向下俯仰力仍然增加。为了稳定飞机,飞行员加大了发动机功率,这减少了俯仰力,但增加了飞机的地速。在最后进近过程中,俯仰趋势增加到飞行员无法保持下滑道的程度。飞机在距跑道入口约 15 米处撞到地面,并继续沿着地面飞行,最后停在铺好的路面上。飞机遭受了严重损坏(图 1),受轻伤的飞行员在 AFRS 的帮助下离开了飞机。
飞行管理系统 • 第 2A 阶段引入了双 FMS 安装选项,无需任何额外硬件,支持 – 综合导航数据库 – 图形 INAV 和飞行计划 – 主要和次要飞行计划 - 每个飞行计划 100 个航路点 - 1000 个存储的飞行员定义航路点 - 3000 个存储的飞行计划 – 精密和非精密进近 – SID/STAR 程序 – 广域增强系统 (WAAS) – 全套 RNAV 进近 - RNP - LNAV/VNAV - LNAV - LPV - 大角度进近和着陆 – 垂直下滑道 (VGP) 模式 – 垂直导航 (VNAV) – 直达功能 – 自动航段转换 – 自动倾斜角限制 – 平行偏移 – 天气备用 – 大容量存储模块 – PC 飞行计划工具
飞行员决定终止飞行,并告知空中交通管制部门她的意图。在转向基准航段并降低空速后,飞行员发现尽管施加了更多的机头上调配平,但机头向下俯仰力仍然增加。为了稳定飞机,飞行员施加了更多的发动机功率,这减少了俯仰力,但增加了飞机的地速。在最后进近过程中,俯仰趋势增加到飞行员无法保持下滑道的程度。飞机在距跑道入口约 15 米处撞到地面,并继续沿着地面飞行,最后停在铺好的路面上。飞机遭受了严重损坏(图 1),受轻伤的飞行员在 AFRS 的帮助下离开了飞机。
飞行员通常认为,在航空母舰上着陆是最困难的训练之一,因为能见度条件、航空母舰动力学和狭小的着陆区使着陆变得复杂。根据能见度条件,可以使用几种接近航空母舰的方法,如 [1] 中所述。在我们的案例中,研究的轨迹包括在距离航空母舰 7.5 公里处开始下降,并将钩子放在所需的下降滑行上。为了确保着陆精度,不进行拉平。方法可以总结为保持下降率和迎角恒定,以保持飞机稳定性并防止失速。航空母舰上的着陆控制并不是一个新问题。它使用经典传感器(如雷达或相对 GPS [2])进行研究,这些传感器确定相对于参考轨迹的误差,并使用控制律对其进行校正,该控制律可以是最优的 [3] 或鲁棒的 [4]。[3] 中实现了一些航空母舰动力学预测模型,以改进控制。几十年来,出于认知和安全方面的考虑,人们一直在研究飞行员着陆时使用的视觉特征。目的是了解飞行员使用的特征并确定他们的敏感性[5],以便模拟人类反应并改善飞行员训练。[6] 介绍了用于在对准、进近和着陆期间控制飞机的视觉特征的相当完整的最新技术水平。例如,消失点和撞击点之间的距离允许飞行员跟随下降滑行。在[7]和[8]中,考虑到小角度假设,建立了相对姿势和视觉特征之间的联系。航母着陆主要在辅助系统范围内研究,该辅助系统处理光学着陆系统的可见性。海军飞行员降落在航母上的方法之一是控制飞机,以便将平视显示器 (HUD) 上的下滑道矢量聚焦到甲板上的三角形标记上,如图 1a 所示。另一种方法是将飞机的下滑道矢量与甲板上的三角形标记对齐,如图 1a 所示。
1.介绍。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.1-1 1.1 系统描述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.1-2 1.2 内部监控 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.1-2 1.3 ADI/HSI 功能监控 .。。。。。。。。。。。。。。。。。。。。。。.1-3 2.EADI/EHSI 操作控制。。。。。。。。。。。。。。。。。。。。。。。.2-1 2.1 控件 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2-1 2.1.1 显示强度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2-1 2.1.2 测试按钮 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2-1 2.1.3 功能按钮 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2-1 2.1.3.1 “N”NORM 按钮。。。。。。。。。。。。。。。。。。。。。。。。。.2-1 2.1.3.2 “M”模式按钮 .。。。。。。。。。。。。。。。。。。。。。。。。.2-1 2.1.3.3 “R”量程按钮。。。。。。。。。。。。。。。。。。。。。。。。。。.2-2 2.1.3.4 “I”集成按钮。。。。。。。。。。。。。。。。。。。.2-2 2.1.4 环境光传感器。。。。。。。。。。。。。。。。。。。。。。。。。.2-2 3.EADI/EHSI 显示。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.3-1 3.1 EADI 显示。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.3-1 3.1.1 俯仰姿态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.3-1 3.1.2 横滚姿态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.3-2 3.1.3 象征性飞机 ............................3-2 3.1.4 飞行指挥员指令 ...............。。。。.3-2 3.1.5 转弯速率。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.3-3 3.1.6 速度指令 .。。。。。。。。。...................3-3 3.1.7 下滑道指示器 ................................ .3-3 3.1.8 上升式跑道 ..。。。。。。。。。。。。。。。。。。。。。。。。.......3-3 3.1.9 决断高度(DH)通告 ......。。。。。。。。.3-4 3.1.10 ADI 故障通告。。。。。。。。。。。。。。。.......3- 4 3.1.11 比较器监视器通告 ....... div>........3-6 3.1.12 ADI 快速参考 ..。。。。。。。。。。。。。。。。。。。。。。.3-6 3.2 EHSI 显示。。。。。。。。。。。。。。。。。。。。。。。。。...... div>...3-11 3.2.1 正常 HSI 显示 ... div>.................. div>.......3-11 3.2 .1.1 方位卡 ......< div> 。。。。。。。。。。。。。。。。。。。。。。.3-11 3.2.1.2 导航源通告。。。。。。...... div>.3-11 3.2.1.3 选定标题 ............................ .3-12 3.2.1.4 选定课程 .............................. .3-12 3.2.1.5 航向偏差显示 ....................3-12 3.2.1.6 方位指针 ............................ .3-12 3.2.1.7 距离显示 ............................ .3-13 3.2.1.8 至/从显示 ..。。。。。。。。。。。。。。。。。。。。。。。.3-13 3.2.1.9 下滑道显示 .......................3-13 3.2.1.10 漂移角度显示 .............。。。。。。。。.3-13 3.2.1.11 地速显示.。。。。。。。。。。。。。。。。。。.3-13 3.2.2 ARC HSI 显示.。。。。。。。。。。。。。。。。。。。。。。。。。。。.3-14 3.2.2.1 方位角卡 .。。。。。。。。。。。。。。。。。。。。。。。。。。.3-14 3.2.2.2 导航源通告 .。。。。。。。。。。。.3-14 3.2.2.3 选定标题 .。。。。。。。。。。。。。。。。。。。。。。。.3-14 3.2.2.4 选定的课程 .。。。。。。。。。。。。。。。。。。。。。。。。.3-14 3.2.2.5 航向偏差显示 .。。。。。。。。。。。。。。。。。.3-14 3.2.2.6 方位指针 .。。。。。。。。。。。。。。。。。。。。。。。.3-14
本文介绍了一种用于无人机 (UAV) 舰载着陆的 L 1 自适应控制器,该控制器增强了动态逆控制器。三轴和功率补偿器 NDI (非线性动态逆) 控制器作为此架构的基线控制器。内环命令输入是滚转速率、俯仰速率、偏航速率和推力命令。外环命令输入来自制导律,用于校正下滑道。然而,不完善的模型逆和不准确的气动数据可能会导致性能下降,并可能导致舰载着陆失败。L 1 自适应控制器被设计为增强控制器,以解决匹配和不匹配的系统不确定性。通过蒙特卡罗模拟检查了控制器的性能,显示了基于非线性动态逆开发的 L 1 自适应控制方案的有效性。
Beaver 中包含的 KAP 140 自动驾驶仪系统是一种基于速率的数字自动驾驶仪系统,可提供平稳的性能和仅在更昂贵的自动驾驶仪中发现的增强功能。该系统是霍尼韦尔开发的首款此类系统,将数字技术和可靠性带入轻型飞机驾驶舱。KAP 140 滚转轴功能包括机翼调平器、航向选择和 VOR/LOC 拦截和跟踪。KAP 140 还可以耦合到 GPS 和 RNAV 接收器。滚转速率信息来自转弯协调器。俯仰轴功能包括垂直速度、下滑道和高度保持以及高度预选选项。俯仰信息来自压力传感器和加速度计。KAP 140 自动驾驶系统独立于飞机的人工地平线运行。因此,如果真空系统发生故障,自动驾驶仪将保留侧倾稳定性和所有垂直模式。Beaver 版本中的 KAP 140 功能