Rothamsted Research 是一家担保有限公司,注册办事处:如上所述。在英格兰注册编号 2393175。注册慈善机构编号 802038。增值税编号 197 4201 51。由 John Bennet Lawes 于 1843 年创立。
通过植物育种提高农作物的产量是耗时且费力的,而新颖的等位基因组合的产生受染色体链接块和连锁拖拉的限制。减数分裂重组对于通过父母等位基因的重组创造新的遗传变异至关重要。同源染色体之间的遗传信息交换发生在跨界(CO)位点,但CO频率通常很低且分布不均。这种偏见在重组“冷”区域中引起了连锁 - 拖拉的问题,其中不希望的变化仍然与有用性状相关。在植物中,编程的减数分裂特异性DNA双链断裂,由SPO11复合物催化,启动重组途径,尽管只有〜5%导致COS的形成。为了研究Spo11-1在小麦减数分裂中的作用,作为操纵的前奏,我们使用CRISPR/CAS9在六链球菌的所有三种SPO11-1同种植物中生成编辑。显示植物在所有六个Spo11-1副本中都表现出色,无法接受染色体突触,缺乏COS且无菌。相比之下,在营养生长和生育方面,携带三种野生型同源物中任何一个副本的线条与未经编辑的植物都无法区分。然而,对编辑植物的细胞遗传学分析表明,同种异体产生COS和突触动力学的能力有所不同。此外,我们还表明,携带六个编辑的小麦突变体的转化是用TASPO11-1B基因编辑的SPO11-1副本,恢复突触,CO形成和生育能力,因此为这种具有重要意义的作物的重组提供了一种途径。
出版商声明 这是已接受在《药理学与治疗学》上发表的作品的作者版本。出版过程中产生的变更(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,可能已对本作品进行了更改。最终版本随后发表在《药理学与治疗学》(212 (2020))上 https://doi.org/10.1016/j.pharmthera.2020.107555
在 20 世纪 60 年代和 70 年代,许多被认为是可以接受和无害的生活方面现在已经变得不可接受和有害 - 而大型火箭级撞击月球肯定是这一演变的一部分 - 但第四条对“任何必要的设备或设施”的广泛接受是一个过于宽泛的定义。该条款不仅允许对“和平”一词进行广泛的解释,而且还要求对“必要”进行定义。例如,我们是否允许永久性破坏月球表面的采矿设备的操作?如果允许,破坏程度如何:用普通肉眼观察;通过普通业余望远镜观察;还是从 100 公里的月球轨道观察?
简介:多酚氧化酶 (PPO) 是一种双活性金属酶,可催化醌的产生。在植物中,PPO 活性可能有助于抗生物胁迫和次生代谢,但对食品生产商来说是不利的,因为它会导致产品在收获后加工过程中变色和风味特征发生变化。在小麦 (Triticum aestivum L.) 中,在碾磨过程中从谷物的糊粉层释放出的 PPO 会导致面粉、面团和最终产品变色,从而降低其价值。同源组 2 染色体上的 PPO1 和 PPO2 旁系同源基因的功能丧失突变导致小麦粒中的 PPO 活性降低。然而,有限的自然变异和这些基因的接近性使得通过重组选择极低 PPO 小麦品种变得复杂。本研究的目标是编辑 PPO1 和 PPO2 的所有副本,以大幅降低优良小麦品种中的 PPO 籽粒活性。
摘要:小麦是一种主食,在全球范围内消耗是淀粉和蛋白质的主要来源。近年来,全球小麦的摄入量有所增加,总体而言,小麦被认为是健康食品,尤其是在用全谷物制成产品时。然而,通常通过烘烤和/或烤面包在食用之前几乎总是对小麦进行处理,这可能导致形成有毒加工污染物的形成,包括丙烯酰胺,5-羟基甲基甲基膜(HMF)(HMF)和多环状芳族芳族芳族氢碳酸盐(PAHS)。丙烯酰胺主要由自由(可溶性,非蛋白质)天冬酰胺形成,并在Maillard反应中减少糖(葡萄糖,果糖和麦芽糖),并分类为2A组致癌物(可能与人类的致癌物)。它还具有高剂量的神经毒性和发育作用。HMF也是在Maillard反应中产生的,但也可以通过果糖或焦糖化的脱水来形成。经常在面包,饼干,饼干和蛋糕中发现。其分子结构指向遗传毒性和致癌风险。pah是一大类化合物,其中许多是遗传毒性,诱变,致伤性和致癌性。它们主要是由于有机物的不完全燃烧而在油炸,烘烤和烧烤期间形成的。可以随着食谱和加工参数的变化以及有效的质量控制措施而降低这些加工污染物的生产。但是,在丙烯酰胺和HMF的情况下,它们的形成也高度取决于谷物中前体的浓度。在这里,我们回顾了这些污染物的综合,影响其生产的因素以及可以采取的缓解措施以减少小麦产品中的形成,重点是遗传学和农学的作用。我们还审查了全球食品安全部门通过的风险管理措施。
1 资料来源:截至 2024 年 2 月的欧睿国际数据,国际预测,基于实际值和估计值;固定汇率。时尚数据包括服装和鞋类、箱包和行李箱、珠宝和手表。欧洲(不包括俄罗斯)数据含销售税;2 包括 2020 年发行的可转换债券的收益
爱尔兰的这项政策和机构审查 (PIR) 旨在描述生物多样性支出及其背景。它审查了环境保护领域的直接支出和间接支出。它还研究了政府部门和机构在其核心政策中考虑生物多样性的程度,他们负责的部门是否得到生物多样性和生态系统服务的支持,以及他们的一些政策是否与生物多样性相冲突。PIR 是对 2017 年进行的国家生物多样性支出审查 (NBER) 的补充,并将为目前正在进行的财政需求评估提供信息,以确定实施国家生物多样性行动计划 2021-2025 所需的支出类型,以及如何调动这些资源的问题。
1 约翰·英纳斯中心,诺里奇研究园区,诺里奇,英国;2 伯明翰大学生物科学学院,伯明翰,英国;3 约翰·宾厄姆实验室,剑桥,英国;4 澳大利亚堪培拉联邦科学与工业研究组织、农业与食品部 (CSIRO);5 意大利菲奥伦佐拉达尔达基因组学和生物信息学研究中心农业研究与经济理事会;6 欧洲分子生物学实验室,欧洲生物信息学研究所,威康基因组园区,欣克斯顿,英国;7 罗瑟姆斯特德研究中心,哈彭登,英国;8 昆士兰大学昆士兰农业与食品创新联盟,圣卢西亚,澳大利亚;9 诺丁汉大学植物与作物科学系,萨顿博宁顿校区,拉夫堡,英国; 10 意大利博洛尼亚大学农业与食品科学系(DISTAL);11 加拿大萨斯卡通萨斯喀彻温大学作物发展中心;12 墨西哥埃尔巴丹国际玉米和小麦改良中心(CIMMYT)
