前额叶皮层 (PFC) 不对称是情感神经科学的重要标志,已引起人们的极大兴趣,与动机、饮食行为、同理心、风险倾向和临床抑郁症的研究有关。本文提供的数据是使用 PFC 不对称神经反馈 (NF) 作为脑机接口 (BCI) 范例的三个不同实验的结果,而不是旨在获得长期效果的治疗机制,使用功能性近红外光谱 (fNIRS),众所周知,它特别适合研究 PFC 不对称,并且对伪影不太敏感。从实验角度来看,BCI 环境更加注重个体受试者的基线、时期内成功和持续的激活以及最低限度的训练。受试者池也来自普通人群,对特定行为模式的偏见较少,并且不包含任何患者数据。我们在数据集中附上了数据格式、实验和协议设计的详细描述,以及基于基线阈值和参考任务的成功分数定义的个性化指标的分析。本文介绍的工作是 BCI 领域的几项实验的结果,其中参与者按照实时 NF 范式与连续视觉反馈进行交互,这源于我们在情感计算领域的长期研究。我们向社区提供这些实验的 fNIRS 数据集。我们特别提供从我们的情感交互领域的实证研究中提取的数据,这些研究与计算机生成的叙述以及与启发式搜索等算法的交互,所有这些都提供了一种机制来提高参与者由于其逼真的视觉反馈而参与主动 BCI 的能力。除了提供参与者实时接受背外侧前额叶皮层 (DLPFC) 左半侧不对称激活增加的 NF 的方法细节外,我们还重申了精心设计协议的必要性,以确保实时视觉反馈能够适应参与者的个体反应,从而增强 BCI 中 NF 范式的优势。个性化反馈对于 BCI 中 NF 的成功至关重要。
摘要-在21世纪,无人系统(尤其是无人机)将在作战领域发挥主导作用。由于许多领域的技术发展,将无人机用于军事目的变得越来越容易。回顾过去25年来进行的行动,可以看出大多数行动都是在居民区进行的,在那里,具有不对称效果的技术、战术和装备将产生重大影响。除此之外,行动中人员伤亡越多,政府受到的公众压力就越大。考虑到这些因素,人们认为,无人机可用于增加作战优势并防止人员伤亡,未来将得到更频繁、更有效的使用。人们还认为,无人机将在居民区和其他作战环境中用作突击媒介,以利用高水平的不对称效应。
摘要:如今,电介质元面是一个有前途的平台,在许多不同的研究领域,例如传感,激光,全光调制和非线性光学器件。在所有不同类型的薄结构中,不对称的几何形状最近引起了人们的兴趣越来越高。尤其是,跨膜中的非线性光 - 物质相互作用构成了实现对光的微型控制的有效方法。在这里,我们通过第二次谐波生成在介电上表面上展示了非线性不对称产生。通过反转泵的照明方向,非线性发射功率由多个数量级调节。此外,我们演示了正确设计的元表面如何在逆转照明方向时在第二个谐波上产生两个完全不同的图像。我们的结果可能会为实现紧凑型纳米光量设备的重要机会铺平道路,以通过密集整合众多非线性谐振器来对应用进行成像。
在各种物理系统中利用幂律相互作用 (1 / r α ) 的做法正在日益增多。我们研究手性自旋链的动力学作为一种可能的多向量子通道。这源于具有复杂量子干涉效应的色散的非线性特性。利用互补的数值和分析技术,我们提出了一个模型来引导量子态向所需的方向发展。我们使用受 Dzyaloshinskii-Moriya (DM) 相互作用调制的长程 XXZ 模型来说明我们的方法。通过探索局部量子猝灭后的非平衡动力学,我们确定了相互作用范围 α 和 Dzyaloshinskii-Moriya 耦合的相互作用,从而导致了明显的非对称自旋激发传输。这对于量子信息协议传输量子态可能很有趣,而且可以通过当前的离子阱实验进行测试。我们进一步探索了这些系统中块纠缠熵的增长,发现数量级的减少。
光子集成电路(图片)最初是为满足光纤数据传输系统的需求而设计的[1]。近年来,我们目睹了光子整合技术的爆发,并具有不断增长的应用范围。高度活跃的字段包括光传感器[2],医疗应用[3],光学频率梳子生成[4]和量子技术[5]仅举几例。综合光子技术的持续进展是由大型生态系统的开发引起的,包括提供开放访问制造服务的铸造厂[6]。硅光子学基于高度成熟的CMOS制造过程,在此scenario中起着重要的作用[6]。尽管传统的绝缘体硅(SOI)技术仍然在CMOS平台中占主导地位,但基于氮化硅波导的图片对于某些应用来说尤其重要[7]。与硅引导结构相比,用氮化硅制造的结构可提供较小的线性和非线性固有传播损失,较低的热光系数以及一个较大的透明度区域,该区域为从可见的中部到中央验收的应用打开了平台。在负面,氮化硅的主要缺点源于其折射率小于硅的折射率。因此,氮化硅波导中的场限制较差,并且弯曲波导切片中的辐射损失变大[8]。这最终限制了集成设备中曲率的最小可接受半径,因此限制了集成规模。可以通过结合次波长的光栅[9]或侧凹槽[10,11]来修改波格的几何形状来减少弯曲整合波导中的辐射损失。尽管如此,这些设计策略需要其他非标准制造步骤。使用匹配的弯曲[12]允许通过将弯曲的总范围调整为前两种模式的节拍长度的倍数,从而减轻恒定曲率部分与直线输入和输出波导之间的过渡处的损失。可以应用于任意长度的弯曲部分的替代方法是通过将相对侧向移动应用于直的和弯曲的波导[13,14],以最大化不连续性的模式耦合。其他方案基于弯曲波导宽度[15-18]的进行性修改或使用三角学[19],Spline [10,20,21],Euler [22-25],Bezier [16,26]或N -djustable [27]功能。弯曲辐射损失也可以使用不同的算法最小化[28 - 34]。
量子技术目前正在开发能够操纵单量子系统的量子技术。在量子领域的嫁妆中,纠缠是新型量子革命的基本资源之一。在这种情况下,当操纵系统状态时,人们面临着保护纠缠的问题。在本文中,我们研究了经典驾驶场对两个量子与波体环境相互作用的发电纠缠的影响。我们讨论了经典领域对两个(不同)量子位之间的纠缠产生的影响,以及它在保护初始状态纠缠免受其环境引起的衰减中具有建设性作用的条件。尤其是在类似Qubit的情况下,我们找到了系统的固定子空间,希尔伯特空间的固定子空间的特征是不取决于环境属性以及经典驾驶场上。因此,我们能够确定与环境短暂相互作用后达到最大纠缠的固定状态的条件。我们表明,总体而言,经典驾驶领域在强耦合体制中对纠缠保护具有建设性作用。另外,我们说明可以在与环境相互作用后的纠缠状态,甚至是在纠缠的稳态中驱动的可分解初始状态。
在极高的温度下,陶瓷的关键参数之一是其抗蠕变性。蠕变行为的表征通常通过弯曲试验进行评估,当拉伸和压缩之间出现不对称时,蠕变行为的表征会变得复杂。为了检测和量化这种不对称行为,建议使用数字图像相关 (DIC)。首先,高温下 DIC 需要解决几个挑战,即随机图案稳定性、辐射过滤和热雾。由于加热陶瓷的可能性有限、应变场不均匀及其水平低,这些挑战更加严重。除了几项实验发展之外,由于使用了基于临时有限元运动学的两种 DIC 全局方法,应变不确定性得到了降低。最后,将所提出的方法应用于高抗蠕变性能设计的工业锆石陶瓷在 1350°C 下的不对称蠕变分析。
特别适用于为模仿生物微型游泳者的微电机提供拍打和/或旋转驱动。开创性的例子是 Dreyfus 等人建造的游泳者,它由一串拴在红细胞上的磁珠组成。[25] 在这里,游泳以衍生方式诱导精子,即通过拍打一个支持弯曲波传播的柔性附属物。自这一突破以来,已经制造出几种其他受生物启发的磁性微型游泳者,包括由定制微磁体、软磁复合材料和众多结构制成的微型游泳者,其中磁性区域驱动非磁性鞭毛/附属物。[13,15,16,20,26–29] 人们越来越多地研究附属物结构对游泳表现的影响,表明无论是生物系统还是合成系统,游泳速度都会随其长度、弹性和划水频率而变化。 [15,26,28,30] 此外,已确定生物微游泳者的集体相互作用微妙地依赖于鞭毛 (附属物) 耦合动力学和鞭毛下长度尺度上产生的流动。 [30] 这些相互作用在自然界中被用来提高性能:例如,老鼠精子形成长序列以提高其速度。 [7,10,30–33] 尽管如此,对合成系统的附属物设计进行严格控制仍然很困难,当需要纳米级特征时更是如此。 在纳米尺度上实现这种控制的一种特别有前途的方法是 DNA 自组装,正如 Maier 等人所采用的,用于生成基于 DNA 瓦管束的合成鞭毛。 [26] 当连接到旋转的磁珠上时,这些束通过水动力学组装成几微米的螺旋状结构,以类似于细菌的方式驱动平移运动。尽管组装技术可以精确控制合成鞭毛的扭曲和硬度,但它们的长度容易发生寡聚化并且不受控制。在本文中,我们基于 Maier 等人的工作,使用另一种 DNA 自组装策略,即 DNA 折纸。在这里,一个由 8634 个核苷酸组成的单链 DNA 环通过单链 DNA 寡聚体的特定结合以预定方式折叠,以构建定制的、尺寸可控的纳米级附加物。[34–37] 我们提出了一种调节附加物在磁珠上的覆盖率的方法,使其均匀或对称性破缺。通过时间相关磁场摇动这些结构时,我们发现,虽然完全被 DNA 折纸覆盖的结构主要表现出布朗动力学,
生物膜是不对称结构,其不对称性是由于双层小叶中脂质身份的差异以及膜上脂质和小分子的不均匀分布而产生的。蛋白质还可以根据其形状,序列和与脂质的相互作用来诱导和调节膜不对称。由于天然膜系统的复杂性以及在体外产生相关的不对称双层系统而难以理解,膜不对称如何影响大分子行为。在这里,我们提出了一种方法,该方法利用了跨膜β-桶外膜蛋白OPMA的有效,单向折叠,以创建具有已知方向的蛋白质诱导的蛋白诱导的偶极子(由已知方向的蛋白诱导的偶极子)(由序列变异引起的序列变异,该序列变异构成了OMPA回路)。然后,我们将不同的OMPA变体的折叠动力学和稳定性表征为这些蛋白质脂质体。我们发现,折叠OMPA的主要序列和折叠发生的膜的偶极子都在调节折叠速率的情况下起着重要作用。至关重要的是,我们发现,通过将折叠蛋白上的电荷与膜偶极子互补匹配,可以增强折叠动力学和折叠OMPA的稳定性。结果暗示,细胞如何利用膜包裹的蛋白质中环电荷来操纵膜环境以进行适应和存活。
⚫ 尽管美国在拦截胡塞武装的导弹袭击方面取得了很大成功,但美国却耗费了大量关键战术导弹来击败伊朗提供的廉价无人机和导弹,从而损害了美国的军事准备。胡塞武装的不对称战争表明,不对称和消耗战战术可以造成实际损失,在这种情况下,美国军费开支和全球经济都会受到影响,而侵略者只会付出最小的代价。