获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
视觉同时定位和映射(VSLAM)在众多新兴应用中起关键作用,其中包括自动驾驶和机器人导航。它主要利用图像传感器捕获的连续帧来进行定位并构建高清图。但是,现有的方法主要集中于构建可靠和准确的VSLAM系统,而几乎没有研究现有VSLAM系统的脆弱性。为了填补空白,我们引入了AOR(dversary是R oad)攻击,该攻击可以有效地改变定位和映射结果,而无需合法用户检测到广泛使用的VSLAM系统的结果。为此,我们对现有的VSLAM系统进行了深入研究,发现这些系统对环境质量变化非常敏感。在这种见解的基础上,我们设计了一种新颖的对抗斑块生成机制,该机制可以产生不明显的对抗斑块来攻击现有的VSLAM系统。我们广泛评估了对行业级车辆,机器人平台和四个著名的开源数据集的AOR攻击的有效性。评估结果表明,AOR攻击可以有效地攻击现有的VSLAM系统并引入极高的定位错误(高达713%)。为了减轻此攻击,我们还设计了一个重要的防御模块,以同时检测异常的环境纹理分布并支持可靠的VS-LAM。我们的防御模块轻巧,有可能应用于现有的VSLAM系统。