自然衍生的糖胺聚糖(GAG)的化学修饰扩大了其在软组织修复和再生医学中应用的潜在效用。在这里,我们报告了一种新型的交联硫酸软骨素(〜200至2000千座)的制备,该软骨素既可以溶于水溶液,又可以微过滤。我们将这些材料称为“超级收集”。可以进一步将这些材料与不同的捕获剂结合在一起,以进一步修改聚合物性能并增加新功能。代表性材料(GLX-100)在膀胱炎/膀胱疼痛综合征(IC/BPS)的金标准动物模型中表现出膀胱不渗透性持久性不渗透性。对动物膀胱的组织学检查,该记者认为GLX-100的停留时间优于硫酸软骨素(目前用于IC/BPS患者临床治疗的产物)。正如预期的那样,这种新型的交联插入生物聚合物仅限于膀胱壁的腔表面。在这种交流中,我们描述了一种简单而多功能的综合,用于用于软组织修复的交联糖氨基 - 糖(GAG)生物聚合物。硫酸软骨素(〜12 kD)交联以形成可溶性和可滤物的可溶性聚合物,约200至2000 kD分子量。此处介绍的合成允许控制分子量,同时避免形成扩展的块凝胶。此外,该过程通过选择捕获剂可以进一步对超级捕获的化学修改。已经使用了一组代理商,证明了具有多种功能的超级捕捞家族的准备。我们可以优化聚合物特性,调整对各种组织的粘附,添加记者,并与周围组织的生物化学与肽和其他生物活性剂一起。
佩戴合适的手套。根据 EN 374 测试的化学防护手套是合适的。使用前请检查密封性/不渗透性。对于特殊用途,建议与这些手套的供应商一起检查上述防护手套的耐化学性。这些时间是在 22°C 和持续接触下测量的近似值。由于物质加热、体温等导致的温度升高以及有效层厚度因拉伸而减少会导致突破时间显著减少。如有疑问,请联系制造商。在约 1.5 倍大/小的层厚度下,相应的突破时间加倍/减半。数据仅适用于纯物质。当转移到物质混合物时,它们只能被视为指导。
为药物应用选择合适的过滤器至关重要。从AHU(空气处理单元)到最终输出,过滤系统在使药物级空气中没有空气污染物,细菌,病毒和危险气体中起着至关重要的作用。Mikropor提供多种解决方案,包括高效EPA,HEPA和ULPA过滤器以及无泄漏的引擎盖和盒子变化。Mikropor通过使用EN 1822测试标准来确保性能和不渗透性(防泄漏)。包装前每个HEPA过滤器进行单独扫描测试。所有EPA,HEPA和ULPA类过滤器均带有测试证书。Mikropor是制药与生命科学行业空气过滤解决方案的全球领导者,并与全球几家最大的制药商紧密合作。
我们的生物传感器由一个外壳、一个恒电位仪和两个墨盒组成,墨盒又被分成一个流道、一个膜和一个隔室。墨盒的主体由两片 40 毫米厚的 PMMA 板制成,由 0.25 毫米厚的 Liqcreate Flexible-X 垫圈密封。一片板容纳流道,另一片主要用作螺钉连接的锚。然后,由市售的纤维素透析膜和垫圈创建测量隔室,该膜将主流与隔室分开,垫圈形成其体积。KidneyGuard 使用透析膜来确保对较大分子的不渗透性,防止酶被冲走,并且通过限制电极附近的流量来延长其寿命。在测量室的底部,在锚定 PMMA 和垫圈之间,插入丝网印刷碳电极 (SPCE),并且室内充满了支持电解质。第二个墨盒容纳一个生物反应器。其室内充满了固定化酶和支持电解质;否则,它的设计与其他墨盒非常相似。
1. LID/绿色基础设施是米苏拉市的首要任务。虽然目前还未强制实施,但未来可能会实施信贷或激励措施。2. LID 实践旨在通过保护和重建自然景观特征、尽量减少有效不渗透性、创建实用且美观的场地排水系统以及将雨水视为资源而非废物,尽可能在雨水源头附近管理雨水。3. 示例包括生物滞留设施、绿色屋顶、植物生物过滤器和透水路面。有车辆通行的透水铺路材料应为 PaveDrain、TRUEGRID 或公共工程部批准的等效材料。PerkEpave 或公共工程部批准的等效材料可用于无车辆通行的区域。所有透水铺路材料均应按照制造商的说明进行安装,并需要公共工程部批准。 4. LID/绿色基础设施实践旨在利用土壤、植被和雨水收集技术来保护、恢复和创造绿色空间。5. 更多信息请参阅《蒙大拿州施工后雨水 BMP 设计》
摘要:血脑屏障 (BBB) 维持中枢神经系统 (CNS) 的稳态并保护大脑免受循环血液中存在的有毒物质的侵害。然而,BBB 对药物的不渗透性是 CNS 药物开发的障碍,这阻碍了大多数治疗分子进入大脑。因此,科学家一直在努力开发安全有效的技术,以更高的靶向性和更低的脱靶副作用来促进药物渗透到 CNS。本综述将讨论人工纳米药物在 CNS 药物输送中的局限性以及使用天然细胞外囊泡 (EV) 作为治疗载体实现对 CNS 的靶向输送。关于使用 EV 进行 CNS 靶向药物输送的临床试验信息非常有限。因此,本综述还将简要介绍最近在外周神经系统中靶向药物输送的临床研究,以阐明 CNS 药物输送的潜在策略。已经实施了不同的前分离和后分离技术,以进一步利用和优化 EV 的天然特性。各种来源的 EV 也已应用于体外和体内中枢神经系统靶向药物输送的 EV 工程。本文将讨论这些研究在临床上的未来可行性。
超级电容器纤维具有充电时间短、循环寿命长和功率密度高的特点,有望为基于柔性织物的电子产品供电。然而,到目前为止,只生产出了短长度的功能性纤维超级电容器。这项研究的主要目标是引入一种超级电容器纤维,以解决功能可扩展性、灵活性、包层不渗透性和长度性能等剩余挑战。这是通过自上而下的制造方法实现的,其中宏观预制件被热拉成全功能储能纤维。预制件由五个部分组成:热可逆多孔电极和电解质凝胶;导电聚合物和铜微线集电器;以及封装密封包层。该工艺生产出 100 米长的连续功能性超级电容器纤维,比之前报道的任何纤维都要长几个数量级。除了柔韧性(曲率半径~1 毫米)、防潮性(100 次洗涤循环)和强度(68 MPa)之外,这些纤维在 3.0 V 时的能量密度为 306 µWh/cm 2,在 1.6 V 时经过 13,000 次循环后电容保持率约为 100%。为了展示这种纤维的实用性,它首次采用机器编织并用作 3D 打印长丝,开辟了一个新的应用领域。
摘要:蛋白质具有将多种疾病视为治疗疾病和药物载体的能力,这是由于其复杂的功能性能,具有结合伴侣的特定性,生物相容性和可编程性。尽管如此,由于药代动力学特性和膜不渗透性,天然蛋白通常需要援助来靶向患病组织。通过直接结合输送部分来使治疗蛋白和药物载体功能化功能可以增强输送能力。传统上,这是通过对修改的位置或方向几乎没有控制的生物缀合方法来完成的,从而导致高度异质产物具有不同的活性。已经开发出了多种有希望的特定地点蛋白结合方法,以允许更多可调节的递送部分显示,从而增强蛋白质活性,循环特性和靶向特定的特异性。在这里,我们专注于三个特别有前途的特定地点生物缀合技术:蛋白质递送:不自然的氨基酸掺入,分类酶介导的连接和Spycatcher/Spytag化学。在这篇综述中,我们强调了特定地点生物结合对靶向药物传递的承诺,通过总结文献中有影响力的例子,考虑到构建生物缀合物时的重要设计原理,并讨论我们对未来方向的观点。■简介
1俄罗斯科学学院的机械学研究所,俄罗斯,俄罗斯联合会2珀斯州国家研究大学,珀普,俄罗斯联邦,俄罗斯联合会麻木调查了由甲烷(35%),乙烷(35%)和丁烷(35%)和丁烷(30%)的混合物的出现和非线性对流,在水平的环境中在地热梯度的影响下。该区域具有实体的固体边界,并由两个水平层形成,其高度相关为1:3。这些层的特征是孔隙率相等,但渗透性不同。选择了孔隙率和渗透率的大小,接近砂岩,砂岩或石灰石的真实介质的值。分析的混合物的成分属于石油和天然气田土壤中存在的主要化合物。因此,所述的构型是碳氢化合物沉积的模型。情况,相反,下层比上层更可渗透。在整个计算区域中,多孔环境的其余参数被认为是相同的。考虑到热量扩散效应,该问题在DARSI -Bussisles模型的框架内解决。追踪了局部特征的暂时演变以及新兴过程的结构和混合物组成部分的分布。在更较小的高度层中,显示了对流的“局部”性质。如果渗透性更大,则在厚层中观察到类似的涡流位移。与此层中的高度和渗透率的组合结合在一起,流动出现了,在对流的过程中,它开始渗透到较不渗透性的层中,但是形成涡流的中心明显转移到更渗透性的层。在这种情况下,对流本质上是“大的”。