摘要 重力引起的意识丧失 (G-LOC) 是战斗机飞行员面临的主要威胁,可能会导致致命事故。高 +Gz(头到脚方向)加速度力会诱发脑出血,导致周边视力丧失、中央视力丧失(昏厥)和 G-LOC。我们尝试建立一个公式,使用脑氧合血红蛋白 (oxyHb) 值、身高、体重和身体质量指数 (BMI) 来预测 G-LOC。我们分析了 2008 年至 2012 年间测量的 249 名人体离心机受训者的脑氧合血红蛋白值。受训者暴露于两种离心机模式。一种是 4G–15s、5G–10s、6G–8s 和 7G–8s,不穿抗荷服(间隔 60 秒,发作率为 1G/s)。另一组为 8G-15s,起始速率为 6G/s,穿着抗荷服。我们使用近红外光谱仪 (NIRS)(NIRO-150G,日本静冈县滨松光子学株式会社,滨松)测量了受训者的脑氧合血红蛋白值。分析了以下参数。A)基线值为 +Gz 暴露前 30 秒的平均值。B)+Gz 暴露期间氧合血红蛋白的最大值。C)+Gz 暴露期间氧合血红蛋白的最小值。D)氧合血红蛋白从最大值到最小值的变化率(变化率)。使用逻辑回归分析进行统计分析,以建立预测 G-LOC 的公式。受训者的年龄为 24.1 ±1.7(S.D.)(范围,22 ~ 30)
图1多个系统萎缩的治疗方法这种形状说明了针对多系统萎缩(MSA)病理机制的各种治疗策略。MSA的特征是神经元丧失,神经胶质病和α-突触核蛋白夹杂物的积累。抗 - α突触核蛋白疗法包括 - 在诸如ANELE138B,清除剂,例如PD01A,PD03A,LU AF82422,TAK - 341和UB – 312和UB –312和UB –312和抑制方法之类的清除剂中的聚集。细胞疗法涉及修复和再生受损神经组织的间充质干细胞。能量代谢和INSU -LIN信号 - 靶向疗法包括脱齿素 - 4,泛氨醇和NAD +补充。抗炎性和神经保护疗法具有氟西汀,AAV2 - GDNF和KM819的化合物,可减少炎症并提供神经保护作用。细胞调节文本包括显示退化的神经元,α-突触核蛋白夹杂物,活化的星形胶质细胞和小胶质细胞,免疫 - 反应性T细胞,IM成对的线粒体,Pro - 炎性细胞因子,肌蛋白损失和髓质细胞质细胞胞质包含(GCIS)(GCIS)。此视觉代表提供了MSA中治疗策略及其细胞靶标的概述。
I II III 因素 1 (H1):不信任他人的自我中心主义 (α=.79) 12. 人们可能会说好话,但最终他们最关心的是自己的幸福。 5.03 (1.12) .65 -.05 .00 16. 人们更有可能维护自己的权利,而不是承认他人的权利。 4.70 (1.06) .64 -.04 .00 2. 人们会做一些轻微的错事来获得自己的利益。 4.48 (1.11) .60 .08 .09 17. 人们撒谎是为了避免麻烦。 4.61 (1.08) .60 .01 .07 6. 人们撒谎是为了出人头地。 4.35 (1.21) .54 .13 .16因素 2 (H2):相信人们的诚实 (α=.70) 5. 人们通常过着诚实正直的生活 4.16 (1.17) -.11 -.70 .14 8. 人们通常诚实地与他人打交道 4.55 (1.03) .13 -.65 -.15 1. 人们基本上是诚实的 4.36 (1.19) .08 -.61 -.15 14. 人们说到做到 4.00 (1.08) -.11 -.50 .16 因素 3 (H3):不相信人们的谨慎 (α=.67) 4. 人们怀疑别人对自己很友善,因此很谨慎 3.90 (1.09) .05 -.07 .64 10. 人们认为不信任他人更安全4.03 (1.14) .13 .03 .54 13. 人们内心不愿意帮助别人 3.53 (1.10) .00 .11 .53 9. 人们很谨慎,因为他们认为有人会利用他们 4.38 (1.08) .20 -.15 .43 最大似然法,Promax 旋转 特征值 3.93 1.90 1.16 贡献率 30.3% 14.6% 8.9% 累积贡献率 30.3% 44.8% 53.7% 因子间相关性 I - 0.25 0.55 II - - 0.31
第五代移动通信(5G)具有高带宽、低时延、低功耗等优势,可在输电、变电站、配电、用电等各个环节发挥重要作用,有效弥补传统光纤通信的弊端,深刻变革电力通信网。但5G技术应用带来的信息安全问题也逐渐凸显。基于此,提出一种基于服务质量(QoS)的量子密钥分发策略,提高5G电力专网应用方案的保密性。最后验证了量子通信在电力调度系统中应用的可行性。测试结果表明,5G专网服务质量满足电网业务的通信需求,电网模拟调度数据实际传输时延在1s左右,且无丢包现象。
1 联合国人道主义事务协调办公室,《缅甸人道主义更新号》。25,2022 年 12 月 30 日,https://reliefweb.int/report/myanmar/myanmar-humanitarian-update-no-25-30-december-2022 。2 联合国人道主义事务协调办公室,《缅甸人道主义需求概览》,2023 年 1 月 15 日,https://reliefweb.int/report/myanmar/myanmar-humanitarian-needs-overview-2023-january-2023 。3 世界银行,“缅甸经济依然脆弱,改革逆转削弱前景”,2022 年 7 月 21 日,https://www.worldbank.org/en/news/press-release/2022/07/21/myanmar-economy-remains-fragile-with-reform- reversals-further-weakening-the-outlook。4 OCHA,《缅甸人道主义应对计划:2023 年》,2023 年 1 月 25 日,https://reliefweb.int/report/myanmar/myanmar-humanitarian-response-plan-2023-january-2023; “没有补救措施:军政府政策引发药品短缺”,Frontier Myanmar,2022 年 8 月 26 日,https://www.frontiermyanmar.net/en/without-a-remedy-junta-policies-spark-medicine-shortage/。5 全权证书委员会报告,联合国文件。A/77/600,2022 年 12 月 12 日。6 “印度尼西亚外交部长:缅甸军政府不会指挥东盟”,Tempo,2022 年 12 月 29 日,https://en.tempo.co/read/1673692/indonesian-foreign-minister-myanmar-junta-to-not-dictate-asean。7 安全理事会关于缅甸局势的新闻声明,2021 年 7 月 27 日,https://press.un.org/en/2022/sc14986.doc.htm 。
垃圾填埋场是发展中国家一种廉价的固体废物管理方式。大多数垃圾填埋场都是不卫生的,作为露天垃圾倾倒场,对公众和环境健康构成威胁。因此,深入了解垃圾填埋场的化学和微生物学对于制定正确的垃圾填埋场管理政策至关重要。在当前的研究中,我们使用基于培养和不依赖培养的分子方法研究了三个印度垃圾填埋场的化学和微生物学。我们的数据表明,垃圾填埋场的性质在化学、污染物和病原体方面因地点而异。我们还使用优化的培养基富集和培养了三种产甲烷菌,并使用宏基因组组装的基因组方法从富集的微生物组中构建了两个高质量的草图基因组。一个草图基因组的系统基因组学研究显示与 Methanomassiliicoccaceae 成员的序列相似性最高,为 93%,并且始终富含 Acholoplasma 和 Anaerohalosphaera lusitana。尽管我们付出了所有努力,但我们并没有在纯培养中将其分离出来,并假设对于某些尚未培养的产甲烷菌的培养,其他生物的存在起着重要作用,必须辨别它们的互养相互作用才能在未来成功培养。氨基酸降解生物的共培养表明,它们的共培养有助于促进产甲烷菌的生长。此外,我们的数据表明,垃圾填埋场渗滤液含有大量污染物,在排放到自然界或用于灌溉或生物肥料之前必须进行处理。
13:50-14:50 第 6 节 主席:Toya Ohashi 和 Hiromi Kanegae 先天性代谢错误的体内基因治疗 1) 针对罕见疾病患者正在进行的基因治疗临床试验的结果:MPS IIIa、GSDIa、OTC 缺乏症和威尔逊氏病 Eric Crombez – (Ultragenyx Pharmaceutical Inc. 美国加利福尼亚州诺瓦托) 2) 通过在小鼠中表达血脑屏障穿透酶的 AAV 使 GM1 神经节苷脂储存完全正常化 Koki Matsushima (慈惠会大学医学院基因治疗系)
在上个世纪,“量子工程”一词采用了截然不同的含义。在早期出现中,它通常暗示构造量子系统(例如,通过受控量子动力学对光学性质进行工程(Rosencher等,1996),纳米结构的原子设计(FernánándezRossier,2013),2013年),或现有量化对象的量化量化对象(Wallquist等人的杂种) - 或者是杂种(Wallquist等人) - 或者例如,在捕获离子(Poyatos等,1997)或腔QED设置(Haroche,1999)中,本质上量子状态的工程。最近,量子工程已经开始表示复位的领域,涵盖了围绕量子信息任务的狭窄范围(Smith,2018; Asfaw等,2022)或非常广泛的描述,其中包括所有量子技术(Dzurak等人,Dzurak等,202222)。在这项工作中,我们将量子工程称为使用本质上量子动力学的量子系统的制造,控制和表征的领域。从这个意义上讲,量子工程遍历量子技术的所有领域,包括通信,计算,模拟,计量学和传感,也影响基本和应用科学的其他领域,其中量子动力学和量子系统的控制带来了新现象。Quantum Engineering使用量子信息科学的语言作为工具箱来理解和设计复杂的量子状态和量子操作,但它也以量子控制,量子光学和多体物理学的工具为基础。另外,我们可以专注于手头的任务:1)制造,2)操作和控制以及3)表征。受到其他工程领域的启发,如Zagoskin(2017)的工作,可以在自下而上的方法中构造量子工程(C.F.图1),根据所涉及的对象的复杂程度:1)单个量子单位的设计和操作,2)此类单元之间相互作用的工程工程,3)3)将这些结构组合为沟通,计算或感应或新的出现结构的操作设备,4)以及量子,经典或型号的工程设计之间的接口之间的交流。在以下文本中,我们在其中一些可能的细分中强调了不同的挑战。