关于Roboze Roboze是在工业3D印刷领域开发和生产高级解决方案的领先公司。建立的目的是改变公司如何设计和生产组件,Roboze为使用超级聚合物和复合材料的增材制造提供了全面的解决方案,从而在航空航天,移动性,能源和制造业等领域提供了应用。Roboze的使命是通过连续创新和提供可靠和可持续的解决方案来加速3D印刷。有关更多信息,请访问www.roboze.com。关于Monster Energy Yamaha Motogp团队Yamaha Factory Racing Motogp是Yamaha在MotoGP的全资工厂团队。该团队成立于1999年,在大奖赛赛车传奇人物韦恩·雷尼(Wayne Rainey)退休后,他在过去的两年中曾在500cc班级中经营一支工厂支持的团队。在荷兰成立了一家新公司 - Yamaha Roc Racing B.V.,以管理Yamaha国际赛车活动的技术方面并运行团队。在2005年,Yamaha Roc Racing B.V.公司完成了从荷兰的转会,以创建意大利的Yamaha MotoGP欧洲运营(Yamaha Roc Racing SRL),并加强并集中了Yamaha Factory Factory Racing Motogp团队的管理。Yamaha Roc Racing SRL位于靠近Monza的Gerno di Lesmo(意大利)。该研讨会于2008年进行了重建,并开设了最先进的设施,为团队提供了一个出色的新总部,并在一个屋顶下设有所有技术,后勤,管理和市场与传播部门。尽管在日本的Yamaha的MotoGP集团中,对MotoGP的技术方面的责任仍在继续,但许多日本和欧洲工程人员都完成了欧洲MotoGP设置。2025年,Yamaha工厂赛车Motogp(Monster Energy Yamaha Motogp)与法国骑手Fabio Quartararo和西班牙骑手Alex Rins参加了MotoGP世界冠军。
积极学校心理学杂志 http://journalppw.com 2022 年第 6 卷,第 6 期,8341-8345 特殊教育中的人工智能,Id&Cp Dr. Smita Tiwary Ojha 1 * 1* 阿米蒂大学助理教授 残疾专家-康复从业者。摘要本文“人工智能——残疾方面的介绍”是对人工智能的描述,特别是在残疾领域。它涉及人工智能的出现、其类型、使用的方法、人工智能辅助设备对残疾人的重要性、人工智能的好处、人工智能工具在残疾领域的例子、其缺点以及在残疾领域的未来。人工智能已经开发出智能计算机工具供人类解决问题。它增强了有特殊需要的儿童与环境互动和学习的方式,因为他们有隐性的教育需求。关键词:人工智能、辅助技术、特殊教育、脑瘫、智力障碍。人工智能简介 在希腊神话中,提到了机器和机械人的概念。尽管我们没有太多关于这方面的文献资料。其中一个故事是关于塔罗斯的,他是一位巨大的青铜战士,被编程来守卫克里特岛。所以,机器学习和人工智能是很早就有人想到的。1950 年,图灵发表了一篇关于计算机是否可以像人类一样智能思考的论文。虽然结果没有得到太多应用,但图灵测试变得非常著名,并且是人工智能领域的一个严肃提议。1951 年,曼彻斯特大学的计算机科学家 Christopher Strachey 使用 Ferranti Mark1 机器开发了一个国际象棋程序。尽管它经过多次改进。1956 年,人工智能一词首次被创造出来。1959 年,首次建立了人工智能实验室以进行研究。1960 年,第一个机器人被引入通用汽车的装配线上。 1961 年,第一个聊天机器人 Eliza 诞生。1997 年,IBM Deep Blue 在国际象棋比赛中击败了世界冠军 Garry Kas Parvo。2005 年,在 DAP Grand Challenge 中,斯坦福赛车队的 Stanley 机器人汽车赢得了冠军。2011 年,IBM 的问答系统 Watson 击败了两位最伟大的危险边缘冠军 Brad Rutter 和 Ken Jennings。就这样,人工智能
“如何度过人工智能寒冬” James Luke 博士,IBM 杰出工程师和首席发明家 如果您不知道,人工智能寒冬是指在人们对人工智能的期望达到顶峰之后出现的低迷,资金枯竭,专业人士对其潜力嗤之以鼻。70 年代末 80 年代初发生过一次人工智能寒冬,十年后又发生过一次——最后一次是在 1992 年。在这样的“寒冬”里,人们对人工智能嗤之以鼻并不罕见——James Luke 深情地回忆起 IBM 的一位(至今仍是)高管在他职业生涯早期告诉他,“如果你想在公司有所成就,就离开人工智能”。但即便是 Luke 也承认,考虑到挑战的规模,出现怀疑者并不奇怪。Luke 在会议开幕式主旨演讲中表示:“我们试图用人工智能重塑人脑的智能,这是人类面临的最大工程挑战。” “它比曼哈顿计划、比大型强子对撞机还要大——但我们通常只以两三个人组成的团队进行研究。”尽管如此,他仍敦促与会代表对人工智能保持积极态度,因为如果以正确的方式对待,人工智能可以发挥作用并带来巨大的机遇。那么,什么才是“正确的方式”?卢克说,人工智能有效用例的最佳例子之一仍然是 1997 年超级计算机深蓝与世界冠军国际象棋选手加里卡斯帕罗夫之间的著名比赛。深蓝曾在 1996 年挑战卡斯帕罗夫并失败,而它的架构师 IBM 决心不再重蹈覆辙。IBM 工程师寻求另一位国际象棋大师的帮助来构建深蓝,并对计算机进行编程,使其能够预测未来 14 步。从本质上讲,它复制了人类的能力,但通过巨大的规模进行了扩展。尽管“深蓝”赢得了 1997 年的锦标赛,但它的局限性也暴露无遗。当时参与打造它的大师说:“深蓝每秒评估两百万步,我评估三步。但我怎么知道该评估哪三步?”卢克说,这句话完美地概括了人工智能的缺点:“我们还没有解决这个问题,我们不明白大师如何知道该评估哪三步。这是智能和人工智能之间差异的一个很好的例子。人工智能不会比人类更好——人类脑细胞比电子神经元复杂得多。”他补充说,人工智能经常被认为比人类智能更好,因为它不会忘记东西。但卢克认为,人类忘记的能力是智能的一部分,因为忘记可以帮助我们“概括、实验和学习”——更不用说不会被我们做过的所有可耻的事情所打败。卢克分享了三条让人工智能发挥作用的建议:
人工智能 (AI) 极大地改变了我们所知的世界。机器学习 (ML) 是人工智能的一个分支,其关键进展在于使机器能够从数据中学习。深度学习 (DL) (LeCun、Bengio 和 Hinton,2015) 发挥了核心作用,这是一种基于人工神经网络的技术,旨在有效支持学习。由于 DL 与强化学习 (RL,即代理通过与现实世界交互进行学习并相应地获得奖励或惩罚的概念) 相结合,它已被证明能够提供有时超越人类的表现。一个典型的例子是 AlphaGo 计算机程序成功地在围棋比赛中不断击败世界冠军,同时为成功的游戏策略提供了新的见解。这些突破性的成就让人们对人工智能及其所能实现的目标过度自信,尤其是在短期内。风险投资蜂拥而至人工智能初创企业。人们期待自动驾驶汽车随时出现在我们的道路上。然而,最近发生的一些严重事件已经敲响了警钟。涉及原型自动驾驶汽车的事故已导致人员伤亡(Tesla Deaths,2020 年),这让人们质疑该技术在人机密切互动的潜在危险情况下的使用是否真的准备就绪。令人惊讶的是,这些事故是由于车辆未能执行相对简单的任务造成的,例如物体检测或障碍物跟踪和避让(Hawkins,2019 年)。事实上,在 AI 能够安全地部署到高风险和潜在危险的情况下之前,需要具备更为复杂的功能。对当前 AI 使用的期望可能需要修改。以自动驾驶为例。智能汽车需要实时对人类行为做出可靠的预测,以便预先调整速度和路线,以应对儿童可能突然穿过马路的决定。深度神经网络可以有效地识别流媒体视频中的人类动作,如运动模式(Singh、Saha、Sapienza、Torr 和 Cuzzolin,2017 年)。然而,后者可能具有欺骗性,因为人类可以根据自己的心理过程、想法和动机以及他们周围看到的事物突然改变主意。在我们的例子中,之前在人行道上走向学校的孩子们可能会看到马路对面有一辆冰淇淋车,并决定冲过马路去买冰淇淋。在如此复杂的环境中,没有一个预测系统仅仅基于过去观察到的运动来运作,就不可能准确可靠,也不需要考虑上下文和其他相关主体的性质。另一方面,人类可以预测其他人的未来行为,即使没有运动,只需快速评估相关人员的“类型”和他们周围的场景(例如例如,站在走廊里的老人很可能会决定乘坐电梯,而不是走楼梯)。这表明人工智能需要解决“热”认知问题,比如人的思维是如何受到其情绪状态影响的(Lawrence、Clark、Labuzetta、Sahakian & Vyakarnum,2008 年;Taylor Tavares、Drevets & Sahakian,2003 年)。热认知是指情绪和社会认知,包括心智理论(ToM)。它与“冷”认知形成对比,在“冷”认知中,信息处理与情感无关。社会认知旨在通过研究潜在的认知过程来理解社会现象(即人们与他人打交道的方式)。随着能够表现出一定(有限)智能的人工智能的出现,这一概念需要扩展到人类如何与智能机器(例如航空公司的对话机器人)打交道,反之亦然。
人工智能 (AI) 极大地改变了我们所知的世界。机器学习 (ML) 是人工智能的一个分支,其关键进展在于使机器能够从数据中学习。深度学习 (DL) (LeCun、Bengio 和 Hinton,2015) 发挥了核心作用,这是一种基于人工神经网络的技术,旨在有效支持学习。由于 DL 与强化学习 (RL,即代理通过与现实世界交互进行学习并相应地获得奖励或惩罚的概念) 相结合,它已被证明能够提供有时超越人类的表现。一个典型的例子是 AlphaGo 计算机程序成功地在围棋比赛中不断击败世界冠军,同时为成功的游戏策略提供了新的见解。这些突破性的成就让人们对人工智能及其所能实现的目标过度自信,尤其是在短期内。风险投资蜂拥而至人工智能初创企业。人们期待自动驾驶汽车随时出现在我们的道路上。然而,最近发生的一些严重事件已经敲响了警钟。涉及原型自动驾驶汽车的事故已导致人员伤亡(Tesla Deaths,2020 年),这让人们质疑该技术在人机密切互动的潜在危险情况下的使用是否真的准备就绪。令人惊讶的是,这些事故是由于车辆未能执行相对简单的任务造成的,例如物体检测或障碍物跟踪和避让(Hawkins,2019 年)。事实上,在 AI 能够安全地部署到高风险和潜在危险的情况下之前,需要具备更为复杂的功能。对当前 AI 使用的期望可能需要修改。以自动驾驶为例。智能汽车需要实时对人类行为做出可靠的预测,以便预先调整速度和路线,以应对儿童可能突然穿过马路的决定。深度神经网络可以有效地识别流媒体视频中的人类动作,如运动模式(Singh、Saha、Sapienza、Torr 和 Cuzzolin,2017 年)。然而,后者可能具有欺骗性,因为人类可以根据自己的心理过程、想法和动机以及他们周围看到的事物突然改变主意。在我们的例子中,之前在人行道上走向学校的孩子们可能会看到马路对面有一辆冰淇淋车,并决定冲过马路去买冰淇淋。在如此复杂的环境中,没有一个预测系统仅仅基于过去观察到的运动来运作,就不可能准确可靠,也不需要考虑上下文和其他相关主体的性质。另一方面,人类可以预测其他人的未来行为,即使没有运动,只需快速评估相关人员的“类型”和他们周围的场景(例如例如,站在走廊里的老人很可能会决定乘坐电梯,而不是走楼梯)。这表明人工智能需要解决“热”认知问题,比如人的思维是如何受到其情绪状态影响的(Lawrence、Clark、Labuzetta、Sahakian & Vyakarnum,2008 年;Taylor Tavares、Drevets & Sahakian,2003 年)。热认知是指情绪和社会认知,包括心智理论(ToM)。它与“冷”认知形成对比,在“冷”认知中,信息处理与情感无关。社会认知旨在通过研究潜在的认知过程来理解社会现象(即人们与他人打交道的方式)。随着能够表现出一定(有限)智能的人工智能的出现,这一概念需要扩展到人类如何与智能机器(例如航空公司的对话机器人)打交道,反之亦然。
在线发布:2024年3月31日(接受出版2024年3月15日,doi:10.7752/jpes.2024.03089摘要这项研究旨在验证基于战术游戏的培训计划的功效该研究重点是评估该计划对提高参与者在单一立场的熟练程度的影响,重点是技术和战术技能。通过将战术游戏理论的原理纳入培训模型,Pencak Silat教练可以增强运动员在执行单稳定技术方面的能力。实施了研发方法,包括四个基本步骤:详尽的文献综述,专家评估,使用Aiken的V系数确定内容有效性以及测试观察者间的可靠性。实用性和有效性评估涉及85名专门从事Pencak Silat的新手武术运动员,并观察到采用裸手,砍刀和棍棒作为测量单位的个人运动。SPSS 25统计软件用于数据分析。分析结果证实了培训模型在提高单稳定技能的技术和战术方面的有效性,可靠性和有效性。该计划适合各种技能水平的运动员,包括较低和精英级别的运动员。这项研究提供了一项强大的培训计划,可通过结合技术和协作游戏练习来增强单稳定技能。最初是在殖民时代作为一种自卫法发展的,它演变成一种文化艺术形式。关键字:训练模型,单立场,战术游戏简介Pencak Silat,其起源可追溯到东南亚的马来民族群体,尤其是在印度尼西亚(Mustaffa,K.,Ahmad,K。,&Wong,1978年),具有丰富的历史。在后殖民时代,Pencak Silat转变为结构化的竞争性战斗运动,其公认的比赛,例如东南亚比赛(海上比赛),欧洲冠军和世界冠军。这项运动见证了全球的显着扩张,据报道,有37个国家参加了2016年世界锦标赛。像空手道和跆拳道等其他亚洲武术一样,彭卡克·西拉特(Pencak Silat)在西方国家也越来越受欢迎,这可以证明,荷兰,比利时,英国,美国和澳大利亚等国家参与2016年世界锦标赛。此外,在东半球,日本,中国和韩国等领先的武术国家也接受了Pencak Silat,这从他们积极参与2016年世界锦标赛中可以明显看出,随后对Pencak Silat作为2018年亚洲运动会和随后的活动和随后的活动(SOO ET,2018年)的官方运动。在Pencak Silat中,其中一项比赛的重点是一种称为单个立场或Jurus Tunggal的运动艺术(Wilda&Irawadi,2019年)。鉴于Pencak Silat的日益普及,必须确定与出色性能相关的关键运动模式。这种理解对于有效的教练,改进的培训方法以及单星竞赛中培训计划和协议的持续发展和创新至关重要(Marwan,2014年)。先前的研究尚未提供对Pencak Silat的全面见解,尤其是单个立场的复杂性,单姿势Pencak Silat包含复杂的运动序列,包括各种基于武器和武器的技术(Haqiyah&Abidin,2020)。精心设计的培训计划模型对于实现执行单一立场的熟练程度至关重要。这样的程序应增强能够熟练地执行单一立场的艺术所必需的技能。新手运动员需要一项培训方案,以支持其运动能力的发展。因此,我们建议基于战术游戏为单一立场实施培训计划模型。战术游戏是一种旨在掌握单一立场的模型中的协作培训方法。这种基于游戏的训练模型是一个理论框架,也是一个连接培训的链接,并通过开发单稳定技能。通过战术游戏和
机器学习在研究和行业中正在迅速发展,新方法不断出现。这种速度甚至使专家要对新移民保持艰巨和艰巨。为了使机器学习神秘,本文将探讨十种关键方法,包括解释,可视化和示例,以提供对核心概念的基本理解。我曾经依靠多变量的线性回归来预测特定建筑物中的能源使用(以kWh),通过结合建筑年龄,故事数量,平方英尺和插入电器等因素。由于我有多个输入,因此我采用了多变量方法,而不是简单的一对一线性回归。该概念保持不变,但根据变量数量将其应用于多维空间。下图说明了该模型与建筑物中实际能耗匹配的程度。想象一下可以访问建筑物的特征(年龄,平方英尺等),但缺乏有关其能源使用的信息。在这种情况下,我可以利用拟合线来估计该特定建筑物的能源消耗。另外,线性回归使您能够衡量每个促成最终能量预测因素的重要性。例如,一旦建立了一个公式,就可以确定哪些因素(年龄,大小或身高)对能耗的影响最大。分类是一个基本的概念,然后再继续采用更复杂的技术,例如决策树,随机森林,支持向量机和神经网。1。2。随着机器学习的进展(ML),您将遇到非线性分类器,从而实现更复杂的模式识别。聚类方法属于无监督的ML类别,重点是将具有相似特征的观测值分组而无需使用输出信息进行培训。而不是预定义的输出,聚集算法根据数据相似性定义了自己的输出。一种流行的聚类方法是K-均值,其中“ K”代表用户为群集创建的数字。该过程工作如下:数据中的随机选择“ K”中心;将每个点分配到其最接近的中心;重新计算新的集群中心;并迭代直至达到收敛或最大迭代限制。例如,在建筑物的数据集中,应用K = 2的K均值,可以根据空调效率等因素将建筑物分为高效(绿色)和低效率(红色)组。聚类具有自己的一系列有用算法,例如DBSCAN和平均移位群集。降低性降低是另一种基本技术,用于管理具有许多与分析不相关的列或功能的数据集。主组件分析(PCA)是一种广泛使用的维度缩减方法,它通过找到最大化数据线性变化的新向量来降低特征空间,从而使其成为将大型数据集减少到可管理大小的有效工具。在具有较强线性相关性的数据集上应用维度降低技术时,可以通过选择适当的方法来最大程度地减少信息丢失。例如,T-Stochastic邻居嵌入(T-SNE)是一种流行的非线性方法,可用于数据可视化以及在机器学习任务中的特征空间降低和聚类。手写数字的MNIST数据库是分析高维数据的主要示例。此数据集包含数千个图像,每个图像都标记为0到9。使用T-SNE将这些复杂数据点投影到两个维度上,研究人员可以在原始784维空间中可视化复杂的模式。类似于通过选择最佳组件并将它们组装在一起以获得最佳性能,类似于构建自定义自行车,Ensemble方法结合了多个预测模型,以实现比单个模型本身所能实现的更高质量预测。诸如随机森林算法之类的技术(汇总在不同数据子集训练的决策树上)就是组合模型如何平衡差异和偏见的示例。在Kaggle比赛中表现最好的人经常利用集合方法,其中包括随机森林,Xgboost和LightGBM在内的流行算法。与线性模型(例如回归和逻辑回归)相比,神经网络旨在通过添加参数层来捕获非线性模式。这种灵活性允许在更复杂的神经网络体系结构中构建更简单的模型,例如线性和逻辑回归。深度学习,其特征是具有多个隐藏层的神经网络,包括广泛的架构,使得与其连续演变保持同步是一项挑战。深度学习在研究和行业社区中变得越来越普遍,每天引起新的方法论。为了实现最佳性能,深度学习技术需要大量数据和计算能力,因为它们的自我调整性质和大型体系结构。使用GPU对于从业者来说是必不可少的,因为它使该方法的许多参数能够在巨大的体系结构中进行优化。深度学习已在视觉,文本,音频和视频等各个领域中取得了非凡的成功。TensorFlow和Pytorch是该领域最常见的软件包之一。考虑一位从事零售工作的数据科学家,其任务是将衣服的图像分类为牛仔裤,货物,休闲或衣服裤。可以使用转移学习对训练衬衫进行分类的初始模型。这涉及重复一部分预训练的神经网络,并为新任务进行微调。转移学习的主要好处是,训练神经网络所需的数据较少,鉴于所需的大量计算资源以及获取足够标记的数据的困难,这一点尤为重要。在行动中的强化学习:最大化奖励和推动AI边界RL可以在设定的环境中最大化累积奖励,从而使其非常适合具有有限数据的复杂问题。在我们的示例中,一只鼠标会导航迷宫,从反复试验中学习并获得奶酪奖励。rl在游戏中具有完美的信息,例如国际象棋和GO,反馈快速有效。但是,必须确认RL的局限性。像Dota 2这样的游戏对传统的机器学习方法具有挑战性,但RL表现出了成功。OpenAI五支球队在2019年击败了世界冠军E-Sport球队,同时还开发了可以重新定位的机器人手。世界上绝大多数数据都是人类语言,计算机很难完全理解。NLP技术通过过滤错误并创建数值表示来准备用于机器学习的文本。一种常用方法是术语频率矩阵(TFM),其中每个单词频率均可在文档中计算和比较。此方法已被广泛使用,NLTK是用于处理文本的流行软件包。尽管取得了这些进步,但在将RL与自然语言理解相结合,确保AI可以真正理解人类文本并解锁其巨大潜力时仍将取得重大进展。TF-IDF通常优于机器学习任务的其他技术。TFM和TFIDF是仅考虑单词频率和权重的数值文本文档表示。单词嵌入,通过捕获文档中的单词上下文,将此步骤进一步。这可以用单词进行算术操作,从而使我们可以表示单词相似性。Word2Vec是一种基于神经网络的方法,它将大型语料库中的单词映射到数值向量。这些向量可用于各种任务,例如查找同义词或表示文本文档。单词嵌入还通过计算其向量表示之间的余弦相似性来启用单词之间的相似性计算。例如,如果我们有“国王”的向量,我们可以通过使用其他单词向量进行算术操作来计算“女人”的向量:vector('queen'')= vector('king'') + vector('king') + vector('woman'') - vector('男人')。我们使用机器学习方法来计算这些嵌入,这些方法通常是应用更复杂的机器学习算法的预步骤。要预测Twitter用户是否会根据其推文和其他用户的购买历史来购买房屋,我们可以将Word2Vec与Logistic回归相结合。可以通过FastText获得157种语言的预训练词向量,使我们可以跳过自己的培训。本文涵盖了十种基本的机器学习方法,为进一步研究更高级算法提供了一个可靠的起点。但是,还有很多值得覆盖的地方,包括质量指标,交叉验证和避免模型过度拟合。此博客中的所有可视化均使用Watson Studio Desktop创建。机器学习是一个AI分支,算法在其中识别数据中的模式,在没有明确编程的情况下进行预测。这些算法是通过试验,错误和反馈进行了优化的,类似于人类的学习过程。机器学习及其算法可以分为四种主要类型:监督学习,无监督学习,半监督学习和增强学习。这是每种类型及其应用程序的细分。**监督学习**:此方法涉及使用人类指导的标记数据集的培训机器。无监督学习的两种主要类型是群集和降低性。它需要大量的人类干预才能在分类,回归或预测等任务中实现准确的预测。标记的数据分为特征(输入)和标签(输出),教机教学机构要识别哪些元素以及如何从原始数据中识别它们。监督学习的示例包括:***分类**:用于分类数据,算法,诸如K-Neartem邻居,天真的贝叶斯分类器,支持向量机,决策树,随机森林模型排序和隐藏数据。***回归**:经常用于预测趋势,线性回归,逻辑回归,山脊回归和LASSO回归等算法,以确定结果与自变量之间的关系,以做出准确的预测。**无监督的学习**:在这种方法中,机器在没有人类指导的情况下处理原始的,未标记的数据,减少工作量。无监督的学习算法在大型数据集中发现隐藏的模式或异常,这些模式可能未被人类发现,使其适用于聚类和降低任务。通过分析数据并分组相似的信息,无监督的学习可以在数据点之间建立关系。无监督学习的示例包括自动化客户细分,计算机视觉和违规检测。基于相似性的聚类算法组原始数据,为数据提供结构。这通常用于营销以获取见解或检测欺诈。一些流行的聚类算法包括层次结构和K-均值聚类。此迭代过程随着时间的推移增强了模型的准确性。维度降低在保留重要属性的同时减少数据集中的功能数量,使其可用于减少处理时间,存储空间,复杂性和过度拟合。特征选择和特征提取是使用两种主要方法,其中包括PCA,NMF,LDA和GDA在内的流行算法。半监督学习通过将少量标记的数据与较大的原始数据结合在一起,在受监督和无监督学习之间取得了平衡。与无监督学习相比,这种方法在识别模式和做出预测方面具有优势。半监督学习通常依赖于针对两种数据类型培训的修改后的无监督和监督算法。半监督学习的示例包括欺诈检测,语音识别和文本文档分类。半监督学习:通过伪标记和传播自训练算法增强模型的准确性:这种方法利用了称为伪标记的现有的,有监督的分类器模型来微调数据集中的较小的标记数据集。伪标记器然后在未标记的部分上生成预测,然后将其添加回数据集中,并具有准确的标签。标签传播算法:在标签传播中,未标记的观测值通过图神经网络中的动态分配机制接收其分配的标签。数据集通常以一个已经包含标签的子集开始,并标识数据点之间的连接以传播这些标签。概率:IB(增加爆发)-30%此方法可以快速识别社区,发现异常行为或加速营销活动。强化学习:强化学习使嵌入在AI驱动软件计划中的智能代理能力独立响应其环境,并做出旨在实现预期结果的决策。这些药物是通过反复试验的自我训练,获得了理想的行为和对不良行为的惩罚,最终通过积极的加强来达到最佳水平。强化学习算法的示例包括Q学习和深度强化学习,这些学习通常依赖大量的数据和高级计算功能。基于神经网络和深度学习模型领域内的基于变压器的体系结构,Chatgpt利用机器学习能力来掌握和制作模仿人类之间的对话互动。
在当今快节奏的世界中,人工智能已成为一个广泛讨论的话题,它已从科幻小说中的概念转变为影响我们日常生活的现实。人们对人工智能及其将想象力融入日常生活的能力着迷。本文旨在探讨人工智能的概念、发展历程、各种类型的人工智能、训练模型、优势以及其多样化应用的案例。人工智能是指开发能够执行需要人类智能的任务的计算机系统。它通过机器学习、自然语言处理、计算机视觉和机器人技术等技术,帮助处理大量数据、识别模式并根据收集的信息做出决策。人工智能涵盖学习、推理、感知、解决问题、数据分析和语言理解等能力。人工智能的最终目标是创造出能够模拟人类能力并以更高的效率和精度执行各种任务的机器。人工智能领域有可能彻底改变我们日常生活的各个方面,例如虚拟个人助理、自动驾驶汽车、医疗诊断和治疗、推荐系统和欺诈检测。人工智能已融入众多行业和日常生活,展现出其多样化的应用。Siri、Google Assistant 和 Amazon Alexa 等虚拟个人助理利用人工智能进行自然语言处理和机器学习,从而提供更精准的响应。自动驾驶汽车使用人工智能算法分析传感数据,并进行实时驾驶决策。医疗保健专业人员利用 IBM Watson for Health 和 Google DeepMind 等平台,将人工智能算法应用于医疗诊断和治疗。Netflix、Amazon 和 Spotify 等在线平台利用人工智能根据用户行为和偏好提供个性化推荐。金融机构利用人工智能通过分析数据的算法实时检测欺诈活动。人工智能 (AI) 是一个复杂的决策过程,在某些领域超越了人类的能力。人工智能机器的一个关键特性是重复学习,这使它们能够从现实生活中的事件中学习并与人类互动。这种学习过程被称为机器学习,是人工智能的一个子领域。由于缺乏准确性和热情,人类难以完成重复性任务。相比之下,人工智能系统在其任务中表现出卓越的准确性。人工智能在医疗保健、零售、制造和银行等各个领域都有广泛的应用。人工智能主要分为两类:弱人工智能(Narrow AI)和强人工智能(General AI)。弱人工智能是指专为特定任务或特定范围的任务而设计的人工智能系统。这些系统在其指定领域表现出色,但缺乏广泛的认知能力。其特征包括专业化能力、应用范围有限以及缺乏意识。狭义人工智能的例子包括虚拟个人助理、推荐系统、图像识别软件、聊天机器人和自动驾驶汽车。而广义人工智能则旨在全面模拟人类智能,包括推理、解决问题、学习和适应新情况的能力。广义人工智能的特征包括类似人类的认知能力、适应性以及在各种任务和领域中概括知识的能力。目前,狭义人工智能是人工智能最常用的形式,广泛应用于各行各业。狭义人工智能的例子包括Siri和Alexa等虚拟个人助理、推荐系统、图像识别软件、聊天机器人和自动驾驶汽车。随着研究人员不断突破人工智能的界限,他们提出了不同级别的人工智能能力。广义人工智能就是这样一个概念,它被认为具有自我意识、意识和主观体验。然而,达到这一水平仍然是一个理论挑战。广义人工智能的发展仍是一个持续研究的领域。另一个极端是超级人工智能,也称为人工智能超级智能 (ASI)。这种类型的人工智能几乎在各个方面都超越了人类智能,并对社会和人类的未来产生重大影响。超级人工智能的特点包括认知优势、快速学习和适应能力,这些特点可以推动各个领域的快速发展。超级人工智能的发展也引发了人们对其潜在社会影响的担忧,包括与控制相关的风险、与人类价值观的契合度以及对人类生存的威胁。尽管目前还处于理论阶段,但研究人员正在积极探索其发展带来的影响和挑战。相比之下,反应式机器是最基本的人工智能类型,纯粹是反应式的。它们不会形成记忆,也不会利用过去的经验来做出决策。例如,IBM 的“深蓝”国际象棋超级计算机在 1997 年击败了国际象棋大师加里·卡斯帕罗夫。这些机器可以感知世界并采取行动,而无需存储任何记忆。而记忆有限的机器可以回顾过去,并根据观察结果做出决策。一个常见的例子是自动驾驶汽车,它会观察其他车辆的速度和方向,并相应地进行调整。这需要在特定时间内监控车辆的驾驶情况。这些信息不会存储在机器的经验库中。基于心智理论的机器可以理解人类的信念、情绪、期望等,并做出情绪化的反应。索菲亚就是这类人工智能的典型例子,尽管该领域的研究仍在进行中。换句话说,先进的机器正在被开发,它们对世界及其实体(包括人类和动物)有着更深入的理解。这些机器将能够回答简单的“假设”问题,并具备同理心,从而更好地理解他人的观点。更重要的飞跃是创造出具有自我意识的机器,它们能够意识到自身身份并预测他人的感受。这种智能水平将代表人工智能研究的重大突破。人工智能 (AI) 的工作原理是通过算法、计算能力和来自各种来源的数据来利用海量数据。该过程包括收集相关数据,对其进行预处理以确保其清洁度和结构化,根据任务需求选择合适的算法,使用标记或未标记数据训练模型,评估其性能,并将其部署到生产环境中执行实际任务。人工智能功能广泛而多样,涵盖各种随时间推移进行调整和改进的技术。这使得模型能够通过持续学习在动态环境中保持相关性和准确性。在线学习、迁移学习和强化学习等技术有助于从经验和反馈中获取新知识。在推理过程中,经过训练的人工智能模型会运用其学习到的模式和表征,对新数据进行预测或决策。此过程包括将输入数据输入模型,并根据模型的内部工作原理获得输出预测或分类。人工智能系统依靠数据、算法和计算能力从经验中学习、做出决策并自主执行任务。人工智能系统的具体功能取决于其架构、算法以及其设计目标任务的性质。人工智能的应用领域广泛,已被广泛应用于医疗保健、金融、零售、制造、交通运输、教育、市场营销、游戏、安全和自然语言处理等各个行业。这些应用包括诊断、患者预后预测、个性化治疗方案、信用评分、欺诈检测、客户服务、需求预测、供应链优化、智能游戏角色、面部识别、入侵检测、机器翻译、情绪分析等等。人工智能的未来很可能涉及机器学习、自然语言处理和计算机视觉的进一步发展,从而为各种应用和行业带来功能日益强大、集成度更高的系统。人工智能的潜在增长领域包括医疗保健、金融、交通、客户服务、刑事司法决策、招聘、教育以及其他涉及道德考虑的敏感领域。人工智能 (AI) 是一种使计算机和机器能够模拟人类学习、解决问题和决策等能力的技术。AI 应用程序和设备可以识别物体、理解人类语言、从新信息中学习,并向用户和专家提供建议。AI 研究的最新焦点是生成式 AI,它可以创建文本、图像和视频等原创内容。生成式 AI 依赖于机器学习 (ML) 和深度学习技术。深度学习彻底改变了机器学习领域,它使算法能够在无需人工干预的情况下从大量未标记数据集中进行预测。这项技术尤其适用于自然语言处理、计算机视觉以及其他需要在海量数据中识别复杂模式和关系的任务。因此,深度学习为我们日常生活中的大多数 AI 应用提供支持。深度学习还支持多种先进技术,包括半监督学习,它结合了监督学习和非监督学习,可以在标记数据和未标记数据上训练模型。此外,自监督学习从非结构化数据中生成隐式标签,而强化学习则通过反复试验和奖励函数进行学习。迁移学习允许将从一个任务或数据集获得的知识应用于另一个相关任务或不同的数据集。生成式人工智能是指能够根据用户的提示或请求创建复杂原始内容(例如文本、图像、视频或音频)的深度学习模型。这些模型对其训练数据的简化表示进行编码,然后从该表示中提取数据以生成与原始数据相似但不完全相同的新作品。生成式人工智能的最新进展促成了复杂的深度学习模型类型的发展,包括变分自编码器 (VAE)、扩散模型和变换器。变换器是许多备受瞩目的生成式人工智能工具的核心,例如 ChatGPT 和 GPT-4、Copilot、BERT、Bard 和 Midjourney。生成式人工智能的运作分为三个阶段:训练、调整和生成。该流程始于基础模型,这是一种深度学习模型,可作为多种不同类型生成式人工智能应用的基础。基础模型可以针对特定任务进行定制,例如文本或图像生成,并且通常基于海量数据进行训练。深度学习算法处理海量非结构化数据(TB级或PB级的文本、图像或视频),并使用基础模型根据提示自主生成内容。这一训练过程计算密集、耗时且成本高昂,需要数千个GPU和数周的处理时间,总计数百万美元。像Meta的Llama-2这样的开源基础模型项目使开发人员能够绕过这一步骤及其成本。为了针对特定的内容生成任务对模型进行微调,开发者可以使用诸如标记数据微调或人工反馈强化学习 (RLHF) 等技术。这需要向模型输入特定于应用的问题或提示以及正确答案。开发者定期评估其生成式 AI 应用的输出,进一步调整模型以提高准确性或相关性。另一种方法是检索增强生成 (RAG),它通过整合训练数据以外的相关来源来扩展基础模型,从而优化参数以提高准确性或相关性。生成式 AI 为各行各业和应用带来了诸多优势,包括重复性任务的自动化、更快地从数据中获取洞察、增强决策能力、减少人为错误、全天候可用以及降低物理风险。AI 可以自动化日常任务,使人类能够专注于创造性工作。它能够做出更快、更准确的预测和可靠的决策,使其成为决策支持或全自动决策的理想选择。AI 通过引导人们完成流程、标记潜在错误以及在无人干预的情况下自动执行任务来减少人为错误,尤其是在医疗保健等精准度至关重要的行业。随着机器学习算法接触更多数据并从经验中学习,其准确性不断提高,错误也随之减少。人工智能始终在线,全天候提供一致的结果。人工智能可以通过使用聊天机器人或虚拟助手来简化客户服务或支持的人员需求。它还可以简化生产流程,保持一致的产出水平,并自动执行那些可能危及人类工人的危险任务。例如,自动驾驶汽车可以降低乘客受伤风险。人工智能的实际应用包括通过聊天机器人改善客户服务、检测欺诈交易、个性化客户体验以及简化招聘流程。此外,人工智能代码生成工具可以加速应用程序开发,而预测性维护模型可以防止设备故障和停机。人工智能的快速应用带来了诸多好处,但也带来了挑战和风险。人工智能系统依赖的数据集可能容易受到篡改、偏见或网络攻击,从而损害其完整性和安全性。为了降低这些风险,组织必须在从开发到部署的整个人工智能生命周期中保护数据完整性。威胁行为者会针对人工智能模型进行盗窃、逆向工程或未经授权的操作,这可能会损害模型的架构、权重或参数。此外,还存在诸如模型漂移、偏差和治理结构崩溃等运营风险。如果不加以解决,这些风险可能会导致系统故障和网络安全漏洞,而威胁行为者可能会利用这些漏洞。为了优先考虑安全和道德,组织必须开发透明、可解释、公平的人工智能系统,包容、稳健、安全且可问责。人工智能伦理是一个多学科领域,旨在优化人工智能的有益影响,同时降低风险。人工智能伦理的原则包括可解释性、公平性和透明性。可解释的人工智能使人类用户能够解读算法产生的结果和输出。公平性和包容性要求在数据收集和模型设计过程中最大限度地减少算法偏差。建立多元化的团队对于创建包容性的人工智能系统至关重要。稳健的人工智能能够处理异常情况而不会造成损害,能够抵御有意和无意的干扰,并防止漏洞。问责制要求对人工智能的开发、部署和结果建立明确的责任和治理结构。与人工智能伦理相关的共同价值观包括可解释性、公平性、包容性、稳健性、安全性、问责制、透明性和责任感。用户必须了解人工智能的开发方式、功能、优势和劣势。提高透明度可以为人工智能模型和服务的创建提供宝贵的见解。确保隐私和合规性至关重要,因为像《通用数据保护条例》(GDPR)这样的监管框架要求组织保护个人信息。这包括保护可能包含敏感数据的人工智能模型,并开发能够适应不断变化的法规的适应性系统。研究人员根据人工智能的复杂程度对其进行了分类:弱人工智能(狭义人工智能)执行特定任务,而强人工智能(通用人工智能,AGI)则具有理解、学习和应用知识处理各种任务的能力,超越人类智能。具有自我意识的人工智能系统的概念仍是一个有争议的话题。人工智能发展的关键里程碑包括:- 1950 年:艾伦·图灵出版了《计算机器与智能》,提出了“机器能思考吗?”的问题,并提出了图灵测试。- 1956 年:约翰·麦卡锡在达特茅斯学院的第一次人工智能会议上提出了“人工智能”一词。- 1967 年:弗兰克·罗森布拉特制造了 Mark 1 感知器,这是一台基于通过反复试验进行学习的神经网络的计算机。- 1980 年:使用反向传播算法的神经网络在人工智能开发中得到广泛应用。 1995年,斯图尔特·罗素和彼得·诺维格出版了《人工智能:一种现代方法》,这是一本关于人工智能的权威教科书,探讨了人工智能的四个潜在目标或定义。大约在同一时期,IBM的“深蓝”国际象棋系统在一场对决中击败了世界冠军加里·卡斯帕罗夫。大数据和云计算时代到来,使企业能够管理用于训练人工智能模型的大型数据资产。21世纪初,人工智能取得了重大进展,包括约翰·麦卡锡在其2004年的论文《什么是人工智能?》中对人工智能的定义。数据科学开始成为一门热门学科,IBM Watson击败了《危险边缘!》冠军肯·詹宁斯和布拉德·鲁特。2015年,百度的 Minwa 超级计算机使用卷积神经网络识别图像的准确率高于人类。同年,在 DeepMind 的 AlphaGo 程序击败世界围棋冠军李索孛后,谷歌以 4 亿美元收购了 DeepMind。2020 年代,大型语言模型 (LLM) 兴起,例如 OpenAI 的 ChatGPT,它们显著提高了人工智能性能和推动企业价值的潜力。生成式人工智能实践使深度学习模型能够在大型数据集上进行预训练。截至 2024 年,人工智能趋势表明它将持续复兴,多模态模型通过结合计算机视觉和 NLP 功能提供更丰富的体验。IBM 强大的人工智能战略:推进值得信赖的人工智能以获得竞争优势一种利用人工智能力量的全面方法,包括创造竞争优势、在整个业务中扩展人工智能以及推进值得信赖的人工智能。