玉米是世界许多国家人类生活中卡路里和蛋白质的重要来源,是非洲的主要主食食品,特别是在非洲东部。在苏丹,玉米的低收益主要是由于使用低屈服的陆地。有必要执行繁殖计划,以处理高产,适应性新品种的生产。因此,本研究旨在估计特征之间的遗传变异性,遗传力,基因型性能和相互关系。在2021年和2022年的两个季节中,在农业研究公司(ARC)的WAD MEDANI SUDAN的Kosti White Nile Research Station Farm评估了十种玉米基因型。大多数评估的基因型在11个测得的特征中表现出广泛而显着的变化。在两个季节中,记录了几天的变异和遗传进展的基因型基因型系数,每行耳朵直径(CM),每行谷物数量(T/HA)。记录了高遗传力和遗传进展的谷物产量,耳长,耳朵高度,植物高度,每耳朵的行,耳朵重量,天数至50%的流苏,100粒的重量以及天数至50%丝线。超过了,谷物产量与每耳的行数(r = 0.479),耳朵长度(r = 0.381),100粒重量(r = 0.344)和天数到50%的流苏(r = 0.214)。在整个季节中,最高的五种基因型是TZCOM1/ZDPSYN(4.2 T/HA),EEPVAH-3(4.2 T/HA),F2TWLY131228(4.1 T/HA)(4.1 T/HA),PVA SYN6F2(3.9 T/HA)和MAIMIE SIMIED MAIMIES SURGITION和EEPVAH-9(3.8 T/HA),以使其稳定稳定。释放的声音建议。
PARP-1蛋白通过将XRCC1募集到修饰的DNA位置来参与单链断裂修复。当抑制PARP时,细胞依赖其他DNA修复机制,尤其是同源重组,以正确复制基因组信息,而无需进行致命性有丝线的风险。在具有同源重新组合的细胞中,例如BRCA1-或BRCA2突变的细胞,PARP抑制是致命的[1,2]。在2005年提供了这些描述后,合成致死性的概念出现,而PARP抑制剂(PARPI)的开发是为了治疗BRCA-Muthated患者,在该患者中,非癌细胞具有一个野生型等位基因,而癌细胞则是BRCA的定义,因此是特异性敏感的,因此具有特异性敏感性。几个PARPI已在临床上进行了研究,可用于治疗癌症患者(Olaparib,Rucaparib,Talazoparib,Niraparib和Veliparib(ABT-888))。有关PARPI的科学文献非常丰富(自2005年以来> 12,000篇论文),研究论文,临床试验和评论涉及有关作用机理,抗药性,临床活动以及新化合物的发展。最初认为PARPI的作用机理是对PARP1相关的单链破裂修复的“简单”抑制作用,随后出现更具毒性和更容易恢复的双链断裂。然而,真理要复杂得多,正如T. Helleday [3]已经讨论的那样,自从该出版物[4]开始。关于Parpi的许多知识仍然未知,它们的临床可能比今天所描述的要强。基于这些知识的工作促进了与PARPI活性和耐药机制有关的其他蛋白质的鉴定,并有助于发展与其他DNA相关蛋白(如RAD51 [5]和EZH2 [6]的药理抑制其他与DNA相关蛋白的相关策略[6]。特别是其他DNA修复的可能参与
摘要:本文列出了 1998 年 1 月至 2001 年 12 月期间在加那利群岛海岸搁浅的 93 只海龟(88 只 Caretta caretta、3 只 Chelonia mydas 和 2 只 Dermochelys coriacea)的病理学发现和死亡原因。其中,25 只(26.88%)死于自发性疾病,包括不同类型的肺炎、肝炎、脑膜炎、败血症和肿瘤。然而,65 只龟(69.89%)死于与人类活动相关的病变,如船只撞击伤(23.66%)、被废弃的渔网缠住(24.73%)、吞食鱼钩和单丝线(19.35%)以及吞食原油(2.15%)。创伤性溃疡性皮肤病变是最常见的肉眼病变,发生在 39.78% 的受检龟只中,并与嗜水气单胞菌、溶藻弧菌和葡萄球菌感染有关。肺水肿(15.05%)、肉芽肿性肺炎(12.90%)和渗出性支气管肺炎(7.53%)是最常见的呼吸道病变。肾炎的不同组织学类型包括慢性间质性肾炎、肉芽肿性肾炎和肾周脓肿,影响 13 只龟(13.98%)。溃疡性和纤维素性食管炎和创伤性食管穿孔是食管中最常见的病变,大多数病例与吞食鱼钩有关。 15 只龟(16.13%)感染了异尖线虫幼虫引起的胃炎。肝脏病变中最常见的病变为坏死性和/或肉芽肿性肝炎(27.95%)。创伤性病变包括坏死性肌炎(10.75%),主要由渔网缠住或船只撞击引起,以及 1 或 2 只鳍肢被渔网截断(25.81%)。还观察到了创伤性糜烂和/或甲壳/腹甲骨折,主要由船只撞击引起(26.88%)。眼部病变包括异嗜性角膜结膜炎、溃疡性角膜炎和异嗜性巩膜炎,影响了 7 只龟(7.53%)。
乙酰乳酸合酶(ALS)或乙酰羟基酸合酶(AHAS)是分支链必需氨基酸丝线,Leucine,Leucine和Isopoilucine的生物合成途径中的第一个酶(1,2)。来自五个化学组的磺酰脲(SU),咪唑酮(IMI),三唑吡吡咪定(TP),嘧啶基 - 硫代苯甲酸盐(PTB)和磺酰基 - 氨基氨基苯甲酸 - 氨基苯甲基 - 苯甲酸 - 苯二唑诺酮(SCT)抑制Als Amniv的序列化的除草剂。 乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。 因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。 但是,耐药的杂草很快出现了,即 在1987年在美国确定的抗性刺芽生菜(5)。 从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。 研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。 基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。除草剂。乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。但是,耐药的杂草很快出现了,即在1987年在美国确定的抗性刺芽生菜(5)。从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。网站http://www.weedscience.org呈现了根据每个AAS对ALS抑制剂获得的抗性除草剂杂草获得的阻力模式的更新记录[1]。