在环理论中,构建一个包含另一个环的更大环非常有用,这被称为环扩展 [1-2, 11-15]。最近,人们研究使用 Turiyam 环 [16] 处理四向数据分析,并研究其广泛的性质 [17-19] 来解决各种决策问题。然而,需要对一些猜想和方程进行基本的证明,以理解数学代数的可用性 [20]。为了实现这一目标,本文重点研究了一些丢番图方程的可逆性条件及其对 Turiyam 环的扩展。
用户意图。基于 SSVEP 与视觉刺激调制频率锁定这一知识,界面通常设置为在场景中具有多个目标,每个目标都标记有一个通过闪烁传递的唯一频率。目标可以是放置在物体上或附近的发光二极管 (LED),以表示潜在动作、物品或到达坐标 [4–7],也可以表示在计算机屏幕上,每个目标块代表 BMI 拼写器中的字符或用于控制计算机或其他设备的命令 [8–10]。为了从界面中呈现的所有目标中识别出用户的预期目标,解码算法会分析包含 SSVEP 的收集到的脑信号的频率成分,并根据主要频率特征做出决策。在典型的 SSVEP 设置中,诱发的 SSVEP 包含刺激频率 𝑓 ,以及该频率的谐波 2 𝑓、3 𝑓,... [1, 11]。传统基于 SSVEP 的 BMI 的局限性之一是目标数量受到 SSVEP 有限的响应范围 [1] 和谐波存在的限制,如果在界面中同时使用某个频率及其谐波,可能会导致错误分类。这减慢了 BMI 在提高命令处理能力(命令数量)方面的发展 [12]。为了解决这个问题,引入了多频 SSVEP 刺激方法,旨在增加在有限频率下可呈现的目标数量 [13–17]。然而,多频 SSVEP 的解码器尚未得到广泛探索。现有的多频 SSVEP 解码器包括基于功率谱密度的分析(PSDA)[15, 17]、多频典型相关分析(MFCCA)[18] 和针对每个单独用户或用例的基于训练的算法 [13, 19]。与两种无需训练的方法相比,基于训练的算法具有更高的分类准确率,但需要为每个用户进行额外的训练和界面设置。PSDA 和 MFCCA 支持即插即用,提高了 BMI 的实用性。然而,PSDA 通常解码准确率有限,因为它没有充分考虑多频 SSVEP 中的复频率特征,这些特征不仅包含刺激频率及其谐波(如单频 SSVEP),还包含刺激频率之间的线性相互作用 [16]。MFCCA 通过在解码中引入线性相互作用而显示出在多频 SSVEP 解码中的优势 [18],但 MFCCA 的一个主要问题是它是基于典型相关分析 (CCA) [20] 开发出来的,具有很高的时间复杂度。 CCA 的渐近时间复杂度为 O ( lD 2 ) + O ( D 3 ) (以 O ( n 3 ) 为界,其中 n 表示解码时的输入大小),其中 l
R. STAHL 的全球总部位于德国瓦尔登堡。R.STAHL Inc. 位于德克萨斯州休斯顿,以其世界一流的制造、工程和技术服务能力而自豪。在这里,我们的工程师齐心协力,为全球复杂系统开发量身定制、可靠且经济高效的解决方案。项目管理和生产部门在最先进的设施中并肩工作,以促进整个生产过程中所有部门之间的沟通与合作。扁平层级、灵活性和开放对话描述了我们的文化。我们庞大的组件和系统组合是世界上最全面的产品之一,是我们防爆系统解决方案的基础,所有这些解决方案都经过精心设计,可以无缝协作。这确保了我们的客户所需的可靠性以及项目成功的保证。我们的专家代表将随时向您通报项目状态。我们位于魏玛和科隆(德国)、斯塔万格(挪威)、亨厄洛(荷兰)、金奈(印度)和上海(中国)的其他制造工厂也遵循同样的高标准。
研究生工程师(研究) 2015 年夏季 - 2016 年冬季 • 研究多个政府资助项目的 GPU 网络策略。 • 为 AMD 的 ROCm 软件堆栈编写开源 GPU 网络运行时。 • 为外部资助提案做出贡献,以扩大 AMD 研究组合的广度。 • 将通过研究获得的网络见解融入 AMD 的产品路线图。 • 为 AMD 的事件驱动、周期级 CPU/GPU 模拟器贡献新功能和性能优化。 • 指导多个实习项目和新员工。 • 面试多个技术领域的职位候选人。 • 撰写并在国内外会议上发表多篇出版物。 • 撰写 10 多项专利申请以保护 AMD 的竞争性知识产权。
2 回顾WBG器件、SiC MOSFET、电源模块及其可靠性挑战。 6 2.1 WBG 器件 6 2.2 SiC MOSFET 特性 8 2.2.1 V gs(栅极 - 源极电压) 10 2.2.2 阈值电压 (V th ) 11 2.2.3 导通电阻 R on 12 2.3 SiC 功率模块 14 2.4 SiC 功率模块的当前行业实践 18 2.5 SiC MOSFET 的故障症状 21 2.5.1 栅极氧化层故障 21 2.5.2 体二极管故障 23 2.5.3 栅极漏电流故障 25 2.5.4 导致故障的雪崩事件 27 2.6 可靠性简介 28 2.6.1 功率模块中的电源循环 29 2.6.2 热膨胀和诱发应力 30 2.7 电源循环故障模式 31 2.7.1 引线键合疲劳 32 2.7.2 士兵退化 33 2.7.3 金属化重建 34 2.8 功率循环测试 35 2.8.1 功率循环寿命模型 38
1。(2023,Neurips Conference)Will,G。Behrens,J。Busecke,N。Lose,C。Stern,T。Beucler等。:攀登:用于混合物理机器学习气候仿真的大型多尺度数据集。神经信息处理系统的进步。“ Oustanding数据集和基准测试”奖。2。(2023年,Neurips Workshop)Lin,J.,M。A. Bhouri,T。Beucler,S。Yu&M。Pritchard:在看不见,温暖的气候下,应对混合物理学机器学习气候模拟的压力测试。2023神经信息处理系统会议。3。(2021,Neurips Workshop)Mangipudi,H.,G。Mooers,M。Pritchard,T。Beucler&S。Mandt:使用多通道VAE分析高分辨率云和对流。2021神经信息处理系统会议。4。(2020年,Igarss)Beucler,T.,M。Pritchard,P。Gentine&S。Rasp:迈向物理上一致的数据驱动的对流模型。IEEE国际地球科学和遥感研讨会2020年。5。(2020年,气候信息学)Mooers,G.,J。Tuyls,S.Mandt,M。Pritchard&T。Beucler:大气对流的生成建模。第十届国际气候信息学会议的会议记录,98-105。6。(2019年,ICML研讨会)Beucler,T.,S。Rasp,M。Pritchard&P。Gentine:在气候建模中实现神经网络模拟器中的能量保护。2019年国际机器学习会议。