a)全球蛋白质组学表明,PRT3789下调了基础切除修复(BER)和DNA复制特征4。火山图显示log 2(折叠更改与DMSO)蛋白表达和调整后的-LOGP值在Smarca4-Del NCI-H1693细胞中用PRT3789处理48小时。由PRT3789处理下调的关键BER蛋白被标记。b)PRT3789 +吉西他滨联合疗法在7天细胞滴度GLO分析中显示了SMARCA4-DEL H838 NSCLC细胞系的体外协同体外。%的生存能力与DMSO控件。使用SynergyFinder 2.0 2(C)PRT3789 +吉西他滨组合疗法计算得出的拉链得分,在SMARCA4-DEL H838 NSCLC CDX模型中,TGI为89%。*P <0.05 ** P <0.01 *** P <0.001,与车辆(两尾Mann-Whitney测试)。TGI,平均肿瘤生长抑制与车辆。
基于2023流感季节的回顾性数据,据估计至少有90,000名患者有资格参加本研究。根据计划分析的预期效应大小,每只手臂的患者人数将有所不同。将总共15,000名患者用于被动控制臂,其中25,000名患者针对其他每个实验组。在被动控制臂中预期的基线初级结果疫苗接种率为25%,预计实验干预措施将平均将疫苗接种至少2个百分点增加到27%。通过将15,000名患者分配给被动对照,并将25,000名患者分配给其他手臂,将至少有80%的统计能力从25%到26.3%的疫苗接种增加1.3%,而两尾P <.05。尽管个性化有望极大地提高推力的效率,但主动实验臂之间的差异往往小于主动臂和被动臂之间的差异。因此,样品已成为
注意:数据是中位数(第1;第三四分之一),非参数ANOVA(Kruskal-Wallis测试)和两尾Mann-Whitney U测试,并适用于Dunn's和Bonferroni调整。hba1c,FPG,TG,HDL,LDL,FFA,HSCRP,HCL和全身胰岛素敏感性(M值)。粗体表示相应比较之间差异的显着或趋势。缩写:BMI,体重指数;骗子,耐葡萄糖的人; FFA,游离脂肪酸; FPG,禁食等离子体葡萄糖水平; HBA1C,糖基化血红蛋白; HCl,肝细胞脂质含量; HDL,高密度脂蛋白; H型,身体高的人; HSCRP,高敏性C反应蛋白; LDL,低密度脂蛋白; L型,身体低适合的人; REE基础,在禁食条件下静止的能量支出; REE胰岛素刺激了夹具期间的静止能量消耗; T2D,2型糖尿病; TG,甘油三酸酯。
fi g u r e 2每天调节FADD(A – C)和P-ERK/T-ERK比(D – F)在大鼠脑前额叶前皮层(PFC)(A,D),纹状体(B,E)和Hippocampus(C,F)中。治疗组:Zeitgeber时间(ZT)2,ZT5,ZT8,ZT11,ZT14,ZT17,ZT17,ZT20和ZT23(ZT0,点亮或不活动时期; ZT12; ZT12,Lights-Off或活动期)。有关每个标记的数据点(n)的特定数量和分析时间点的特定数量,请参见表S1。列代表每组N实验的平均值±SD。为每只大鼠显示各个符号。cosinor分析,以评估24小时的节奏性。用两尾学生t检验评估了灯与灯的灯之间的比较。底部面板:为每组实验显示了FADD,β-Actin,p-erk和T-ERK标记的代表性免疫印迹。* p <.05; ** p <.01; *** p <.001; NS:无统计显着性(p> .05)。
fi g u r e 2每天调节FADD(A – C)和P-ERK/T-ERK比(D – F)在大鼠脑前额叶前皮层(PFC)(A,D),纹状体(B,E)和Hippocampus(C,F)中。治疗组:Zeitgeber时间(ZT)2,ZT5,ZT8,ZT11,ZT14,ZT17,ZT17,ZT20和ZT23(ZT0,点亮或不活动时期; ZT12; ZT12,Lights-Off或活动期)。有关每个标记的数据点(n)的特定数量和分析时间点的特定数量,请参见表S1。列代表每组N实验的平均值±SD。为每只大鼠显示各个符号。cosinor分析,以评估24小时的节奏性。用两尾学生t检验评估了灯与灯的灯之间的比较。底部面板:为每组实验显示了FADD,β-Actin,p-erk和T-ERK标记的代表性免疫印迹。* p <.05; ** p <.01; *** p <.001; NS:无统计显着性(p> .05)。
比例并根据统计检验的结果得出结论。使用数字理论设计各种密码。将图理论应用于网络路由问题等实时问题。单元I:基本概率和随机变量:随机实验,样本空间事件,概率的概念概率的公理,一些有关概率分配的重要定理,条件性概率定理,对条件性概率,独立事件,独立事件,贝叶斯定理或规则。随机变量,离散概率分布,随机变量的分布函数,离散随机变量的分布函数,连续随机变量单元II:抽样和估计理论:种群和样本,使用和不替换随机示例进行统计推理采样,随机数量量级统计分布,频率分布,相对频率分布,相对分布,计算,计算,计算,均值分布,计算,计算,计算,计算。公正的估计值和有效估计点估计值和间隔估计值。可靠性置信区间的人口参数估计,最大似然估计单元III:假设和意义的检验:统计决策统计假设。null假设假设测试和I型和II型误差的显着性和II型误差的显着性测试水平,涉及正态分布的一尾和两尾测试P值的特殊样本的特殊测试特殊测试的特殊样本具有估算理论和假设测试特征曲线之间的小样本关系的特殊显着性测试。测试质量控制图的功率将理论分布拟合到样本频率
图1。神经元中VPS13的丧失导致年龄增强运动缺陷。(a)果蝇中组织特异性敲低的示意图。使用泛神经元驱动器elav-gal4进行神经元(红色)的特定敲低(红色)。使用Pan-Muscle驱动器24B-GAL4进行肌肉(蓝色)的特定敲低(蓝色)。(b)在无处不在(ACT-GAL4),神经元特异性(ELAV-GAL4)或肌肉特异性(24B-GAL4)敲低的(b)表现为成年的百分比,与基因型匹配的对照(GAL4具有UAS-luciferase(Luc)(Luc)相比,VPS13的肌肉特异性(24B-GAL4)敲低。 n≥50个基因型分析的动物。 (c)示意图描绘了成人飞行攀岩测定法,示例为100%攀爬(左)和50%攀爬(右)。 在实验中,分析了N〜10的组。 (D-E)在3-4天旧的神经元特异性(D)或肌肉特异性(E)VPS13敲低苍蝇和配对对照中进行攀爬测定。 在每个条上显示的总n。 对于每种基因型,从三个独立的遗传杂交中收集苍蝇。各个数据点代表了这些生物学重复的平均攀爬。 (F-G)控制(圆形符号)和特定于神经元特异性的敲低,红色(F)或特定于肌肉的敲低,蓝色(G)的VPS13(正方形符号)的攀爬测定法。 elav> luc n = 79; elav> vps13(i)n = 68; 24b> luc n = 75; 24b> vps13(i)n = 70。 生物学三份分析的所有样品。 图显示平均值±S.D。 使用未配对的两尾t检验计算出的显着性。 * p <0.05; ** p <0.01; NS =不重要。(b)表现为成年的百分比,与基因型匹配的对照(GAL4具有UAS-luciferase(Luc)(Luc)相比,VPS13的肌肉特异性(24B-GAL4)敲低。n≥50个基因型分析的动物。(c)示意图描绘了成人飞行攀岩测定法,示例为100%攀爬(左)和50%攀爬(右)。在实验中,分析了N〜10的组。(D-E)在3-4天旧的神经元特异性(D)或肌肉特异性(E)VPS13敲低苍蝇和配对对照中进行攀爬测定。在每个条上显示的总n。对于每种基因型,从三个独立的遗传杂交中收集苍蝇。各个数据点代表了这些生物学重复的平均攀爬。(F-G)控制(圆形符号)和特定于神经元特异性的敲低,红色(F)或特定于肌肉的敲低,蓝色(G)的VPS13(正方形符号)的攀爬测定法。elav> luc n = 79; elav> vps13(i)n = 68; 24b> luc n = 75; 24b> vps13(i)n = 70。生物学三份分析的所有样品。图显示平均值±S.D。使用未配对的两尾t检验计算出的显着性。* p <0.05; ** p <0.01; NS =不重要。
(a)使用SUP-B15 Cas9单克隆,SGRNA库的慢病毒转导效率。(b)使用KOPN-8 CAS9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品中SGRNA读数的分布。(c)使用SUP-B15 Cas9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品中SGRNA读数的分布。(d)使用KOPN-8 CAS9单个克隆在CRISPR屏幕上收集的NGS样品的PCA分析。(E)使用SUP-B15 Cas9单个克隆在CRISPR屏幕的“初始”和“最终”点收集的NGS样品的PCA分析。(f)使用KOPN-8 CAS9单个克隆,针对CRISPR屏幕中36个RNA和DNA甲基化机械基因的SGRNA的CRISPR得分。CRISPR得分已针对阴性对照SGRNA的平均得分进行标准化(设置为0.0)。(g)使用SUP-B15 Cas9单克隆,针对CRISPR筛选中36个RNA和DNA甲基化机械基因的SGRNA的CRISPR得分。CRISPR得分已针对阴性对照SGRNA的平均得分进行标准化(设置为0.0)。(h)在KOPN-8 CAS9克隆#2中靶向Znf217的25个SGRNA的计数。(i)读取针对SUP-B15 Cas9克隆#1中Znf217的25个SGRNA的计数。(j)读取25个针对Znf217的SGRNA的计数,SUP-B15 Cas9克隆#2。(k)ZnF217在不同的B-ALL亚型和健康的骨髓中的表达。Znf217表达数据来自白血病(MILE)研究的微阵列创新(登录GSE13159)。n = 70,MLL-R; BCR-ABL1 n = 122; n = 237,类似于bcr- abl1; n = 40用于高二倍体; TCF3-PBx1的n = 36; ETV6-RUNX1的n = 58; n = 73用于健康的BM。使用两尾t检验计算p值。** p <0.01; *** p <0.001。
图2。DNMT3A募集后的基因表达动力学与数字记忆不一致。使用特定于特定于染色体的染色体整合的169个报告基因基因的示意图。哺乳动物170构成启动子(EF1A)驱动荧光蛋白EBFP2的表达。上游结合位点可实现靶向171的表观遗传效应子,该效应子与DNA结合蛋白RTETR融合在一起,PHLF或DCAS9。报告基因是由染色质绝缘子与其他基因分离出来的172。b实验概述,描述了瞬时转染到具有报告基因的173个细胞,基于转染水平的荧光激活的细胞分选,以及时间顺序的流量细胞仪174测量。根据面板中所示的175个实验时间表。显示的是四种不同水平的转染水平的报告基因176(EBFP2)的流量细胞仪测量值的分布。DNMT3A-DCAS9靶向启动子上游的5个目标位点,177用作炒GRNA目标序列作为对照(图se.2 a,b,表S3)。显示的数据来自来自3个独立重复的代表性178重复。d使用DNMT3A-179的流量细胞仪的单细胞基因表达测量值对应于面板C中所示的细胞(30天)。父母是指带有180个报告基因的未转染细胞。数据来自3个独立重复的代表性重复。平均值。e MedIP-QPCR和ChIP-QPCR 181分析DNMT3A-DCAS9和细胞分类后14天分析高水平的转染。分析了启动子区域182。显示的数据来自三个独立的重复。报道的是折叠变化及其平均值,使用183标准∆ ∆ c t方法相对于活性状态。错误条为S.D.DNMT3A-DCAS9的靶向位置为184至5个目标位点(GRNA)。使用炒GRNA目标序列(GRNA NT)作为对照。185 *p≤0.05,**p≤0.01,***p≤0.001,未配对的两尾t检验。根据面板中所示的实验时间线,krab抑制的基因表达动力学(PHLF-KRAB)186。所示是从四种不同水平的转染水平的187个报告基因基因(EBFP2)的流量细胞仪测量值的分布。每天测量一个独立的重复。显示的数据188来自3个独立重复。g重新激活细胞的百分比(400-10 5基因表达A.U.F.)对应于F. h Medip-QPCR面板中显示的189个细胞种群和CHIP-QPCR分析后6天对PHLF-KRAB和Cell 190排序进行了高水平的转染。分析是启动子区域的。数据来自三个独立的重复。191显示的是折叠变化,其平均值由标准∆ΔCT方法确定相对于活性状态。错误192条是S.D.平均值。p≤0.05,**p≤0.01,***p≤0.001,未配对的两尾t检验。参见SI图参见Si无花果。202i简化染色质修饰193当krab = 0,dnmt3a = 0,tet1 = 0时获得的电路图,而H3K9me3并未介导从头催化194 DNA甲基化的催化。SM.1 C. J顶图:(CPGME,H3K4ME3)对的剂量响应曲线。底部图:(DNMT3A,CPGME)对的剂量-195响应曲线。SM.1 D和SM.3。 k k的基因表达的概率分布196的系统,该系统由Si Tape Sm.1和Sm.3中列出的反应表示。 参见Si无花果。 SM.1 B和SM.2。 l概率197在t = 28天后的基因表达分布,如面板I所述获得。 在小组j和l中,将198 DNMT3A动力学建模为脉冲,随着时间的流逝会呈指数减小。 在我们的模型中,α'是通过抑制组蛋白修饰的DNA甲基化建立的归一化速率199,DNA甲基化擦除率200速率与激活组蛋白的擦除速率和激活的组蛋白修改速率之间的µ'是每个基准级别(ε')的级别(均为基础率(均))(招募)(招募)(招募)。修改。 参见SI图 SM.1 E和SM.3。SM.1 D和SM.3。k k的基因表达的概率分布196的系统,该系统由Si Tape Sm.1和Sm.3中列出的反应表示。参见Si无花果。SM.1 B和SM.2。 l概率197在t = 28天后的基因表达分布,如面板I所述获得。SM.1 B和SM.2。l概率197在t = 28天后的基因表达分布,如面板I所述获得。在小组j和l中,将198 DNMT3A动力学建模为脉冲,随着时间的流逝会呈指数减小。在我们的模型中,α'是通过抑制组蛋白修饰的DNA甲基化建立的归一化速率199,DNA甲基化擦除率200速率与激活组蛋白的擦除速率和激活的组蛋白修改速率之间的µ'是每个基准级别(ε')的级别(均为基础率(均))(招募)(招募)(招募)。修改。参见SI图SM.1 E和SM.3。SM.1 E和SM.3。
图1:肠神经元和神经胶质的微生物依赖性维持。(a)在稳态(左)(左)和治疗后五天(右)免疫染色(右)的小鼠卵形丛的共聚焦显微镜图像,用于ANNA1和SOX10。比例尺,50μm。(b)用水或抗生素处理的小鼠的神经元(ANNA1)和膜内神经胶质(SOX10)的定量五天(n = 7)。(c)抗生素治疗后用内部C57BL/6 SPF小鼠进行粪便菌群转移(FMT)实验的示意图。(d)在整个实验(ABX)中用抗生素治疗的小鼠或在抗生素治疗后从SPF小鼠中接受抗生素的小鼠的神经元(ANNA1)和临时胶质神经胶质(SOX10)。FMT后7天分析小鼠(n = 11 ABX,n = 13 fmt)。灰色阴影线指示内部C57BL/6小鼠稳态处的单元格数范围。(e)用ABX或接受FMT处理的SPF小鼠的肠道传输时间测量(n = 10 ABX,n = 11 FMT)。小鼠。灰色阴影线表示稳态处的基线传输时间(n = 10)。数据来自两个独立的实验。(f)抗生素治疗后杰克逊C57BL/6J小鼠的粪便转移实验的示意图。(g)单独用ABX治疗的C57BL/6J小鼠的神经元和神经胶质神经胶质的定量或从失调或SPF小鼠中接受FMT的神经元(n = 5)。小鼠。所有数据均表示为平均值±SEM。(h)沙门氏菌SPIB感染后,杰克逊C57BL/6J小鼠中粪便转移实验的示意图表示。(i)仅用ABX治疗的C57BL/6J小鼠的神经元和神经胶质神经胶质的定量,或从失调或SPF小鼠接受FMT(神经元,n = 7 = 7失菌率,N = 9 SPF; GliA n = 9 spf; GliA n = 4 = 4 = 4 spf)。灰色阴影线指示C57BL/6J小鼠G和i中C57BL/6J小鼠中的细胞数范围。一个未配对的两尾学生的t检验用于面板B,D,E和i。一个单向方差分析进行了多个假设检验,用于面板g。所有数据均从回肠myenteric丛中获得。数据来自至少两个独立的实验,除了面板i中的胶质定量。