零售商通常被抨击是该行业所有疾病的唯一原因,这是真理的严重失真。正如一个种植者所说的那样:“如果不是多家零售商,我们将不会有生意,我们只想以正确的方式参与。”
零售商通常被抨击是该行业所有疾病的唯一原因,这是真理的严重失真。正如一个种植者所说的那样:“如果不是多家零售商,我们将不会有生意,我们只想以正确的方式参与。”
摘要:联想记忆一直是大规模循环新皮质网络执行计算的主要候选对象。实现联想记忆的吸引子网络为许多认知现象提供了机械解释。然而,吸引子记忆模型通常使用正交或随机模式进行训练,以避免记忆之间的干扰,这使得它们不适用于自然发生的复杂相关刺激,如图像。我们通过将循环吸引子网络与使用无监督赫布-贝叶斯学习规则学习分布式表示的前馈网络相结合来解决这个问题。由此产生的网络模型结合了许多已知的生物学特性:无监督学习、赫布可塑性、稀疏分布式激活、稀疏连接、柱状和层状皮质结构等。我们评估了前馈和循环网络组件在 MNIST 手写数字数据集上的复杂模式识别任务中的协同效应。我们证明了循环吸引子组件在前馈驱动的内部(隐藏)表示上进行训练时实现了联想记忆。联想记忆还被证明可以从训练数据中提取原型,并使表示对严重失真的输入具有鲁棒性。我们认为,从机器学习的角度来看,所提出的前馈和循环计算集成的几个方面特别有吸引力。