摘要。这篇科学文章深入回顾了可再生能源的最新进展,探讨了它们在应对全球能源挑战方面的重要性。本文涵盖了各种类型的可再生能源,包括太阳能、风能、水电、地热能和生物质能,强调技术发展、效率改进和环境考虑。此外,本文还讨论了全球可再生能源采用的现状及其对减少碳排放的潜在影响。该分析整合了最近的研究和研究论文的结果,全面概述了可再生能源技术的当前格局。1. 简介 21 世纪人们越来越认识到传统能源的局限性和环境影响。化石燃料的开采、燃烧和利用不仅对全球变暖产生了重大影响,而且还导致了地缘政治紧张和资源枯竭 [1, 2]。在这种背景下,可再生能源已成为一种有前途的替代品,利用自然元素取之不尽的力量来满足世界日益增长的能源需求。受环保要求和能源安全需求的推动,全球各国政府、行业和研究机构加大了探索和提升可再生能源技术潜力的力度。对可持续能源解决方案的追求推动了太阳能 [3, 4]、风能 [5]、水电 [6-10]、地热 [11-13] 和生物质能 [14-20] 技术的发展。这些进步不仅有望带来更清洁的能源,还为各国带来了经济机会和能源独立性。可再生能源在全球和单个国家范围内的能源潜力是当前能源消耗水平的许多倍,因此可以将其视为一种可能的能源生产来源。众所周知,人类发展的先决条件表明,需要对已在管理的可再生能源进行广泛研究,这既是因为石油、天然气和煤炭产量不可避免地增加,成本也随之增加,也因为环境原因(二氧化碳排放和经济政策对环境的其他有害影响)。通常来说,可再生能源的使用不会对环境产生严重的负面影响;在大多数情况下,它们都是环保且广泛可用的能源。可再生能源的严重缺点限制了其广泛使用,包括能量流密度低、随时间变化大,因此需要大量成本来购买用于收集、积累和转换能源的设备 [21]。例如,晴天中午太阳辐射在地球表面的通量密度仅为 1 kW/m 2 左右,其年平均值为考虑到季节和天气波动,对于地球上阳光最充足的地区,热流密度不超过 250 W/m 2 [22]。风流的平均比能量密度通常也不超过几百 W/m 2 ,风速为 10 m/s 时,比能量密度约为 500 W/m 2 。速度为 1 m/s 的水流的能量密度也只有 500 W/m 2 左右。为了进行比较,我们指出,现代蒸汽锅炉炉壁上的热流密度达到几百 kW/m 2 。
根据国际能源署 (IEA) 和欧洲环境署 (EEA) 的数据,能源消耗量逐年增加。这刺激了人们对新能源的探索和现有能源效率的提高。据预测,到 2030 年,光伏设备将产生太瓦级能源,同时千瓦时成本也将降低 [1]。太阳能是最经济实惠的能源之一。硅基太阳能电池主要用于太阳能利用。大部分能源将由硅太阳能电池板产生。除了硅之外,还有各种多层复合材料,如 GaAs、CdTe、Cu(In,Ga)Se 2 和最近提出的钙钛矿结构 [2, 3]。后者价格昂贵,难以在工业规模上生产。此外,由于有毒成分,过期后处理也存在问题,使用此类复合材料违背了绿色化学的原则。硅的优势在于化学可用性、技术链的成熟度、电子元件(包括含有稀土元素的元件)的处理。同时,硅基太阳能电池的一个严重缺点是光电转换效率 (LECE) 相对较低,即最佳样品的转换效率不高于 25% [4,5]。硅的最高光敏性区域位于约 1 µ m,其 LECE 光谱与太阳发射光谱的对应性较差。通过将太阳辐射从紫外线和蓝色光谱范围向下转换为 1 µ m 光谱范围来提高硅太阳能电池板的效率是一项紧迫的任务,对于太空应用而言,这非常现实 [6– 9]。潜在的发射体是三价镱离子,因为它的近红外 (NIR) 发光带约为 1000 nm( 2 F 5 / 2 – 2 F 7 / 2 跃迁)[9–13],与硅电池的 LECE 光谱顶部高度重合。Ba 4 Y 3 F 17 [14–17] 是经过深入研究的新型发光基质之一,因为它表现出下转换发光的高量子产率 [14]。对于在这些光谱区域吸收的各种敏化阳离子,能量可以从紫外和蓝色光谱区域转移到镱。一种特别有效的能量转移机制是通过敏化剂离子的逐步弛豫,通过量子切割机制激发两个受体离子 [12, 13, 18, 19]。量子切割表现出高达 195% 的高量子效率系数,但 NIR 发光的量子产率较低。更有效的途径是在具有更高发光量子产率的系统中简单地降档。一种有前途的组合物是 Yb/Eu 掺杂对,因为铕的吸收光谱包含 UV 和蓝色光谱区域的几条线。镱发光的最高直接测量量子产率(2.对于 SrF 2 :Yb (1.0 mol %):Eu (0.05 mol %) 粉末,在 266 nm 泵浦下达到 5 % [20]。本文旨在合成 Ba 4 Y 3 F 17 :Yb:Eu 固溶体并研究其发光性能。该样品旨在用于增强硅太阳能电池的 LECE。