资金信息欧洲研究委员会,资助/奖励编号:260463;国际马克斯普朗克转化精神病学研究学院;加拿大抑郁症生物标志物整合网络;亚历山大冯洪堡基金会;欧洲分子生物学组织,资助/奖励编号:EMBO- ALTF 650-2016;欧文莫斯科维茨基金会;普拉特基金会;马克贝森;阿德利斯基金会;Louis L. 和 Anita M. Perlman;Perlman 家族基金会;亨利查诺克克伦特生物医学成像和基因组学研究所;Nella 和 Leon Benoziyo 神经疾病中心;规划和预算委员会 I-CORE 计划;Bruno 和 Simone Licht;Roberto 和 Renata Ruhman;联邦教育和研究部,资助/奖励编号:01KU1501A;以色列卫生部首席科学家办公室,资助/奖励编号:3-11389;以色列科学基金会,资助/奖励编号:1565/15、1916/12
• UniGear ZS1 是 ABB 主线全球开关设备,最高电压可达 24 kV、4000 A、50 kA,并在六大洲的您身边生产 • 在 100 多个国家/地区生产和安装了超过 300,000 块面板 • 每个 UniGear ZS1 面板由一个单元组成,该单元可配备断路器、接触器或开关切断器,以及常规开关设备可用的所有附件 • 经批准可用于特殊应用,如海洋、地震、核能,并按照 IEC、GB/DL、GOST 和 CSA 标准进行型式试验 • 单元可以直接与 UniGear 系列的其他产品耦合在一起 • 开关设备不需要后部进行安装或维护,所有操作都从前面进行
GERHARD SALGE – 所谓的“电流战争”已经过去一个多世纪了,爱迪生成熟的直流 (DC) 配电技术与西屋电气(后来成为 ABB 家族的一部分)等公司倡导的新型交流 (AC) 方法展开了较量。最初,直流电是美国中压 (MV) 配电的标准方法,但随着时间的推移,交流技术赶上并超过了直流电:实用的交流电机被开发出来;交流输电线路被证明效率更高;交流变压器被发明,可以进行简单的升压和降压——这是直流电的致命弱点。在直流电被淘汰后的 120 年里,交流技术已经发展到今天的中压配电网络与早期的先驱者截然不同的程度:现在,许多复杂的技术被用于电流传导、电气绝缘、开关操作、保护、控制和中断。现代 MV 分发产品提供商必须掌握所有这些。
安川电机的质量始终引领着驱动器行业,每一代产品都建立在上一代产品的基础上。上一代中压产品 (MV1S) 的现场平均无故障时间 (MTBF) 已证实超过 300,000 小时。MV1000 建立在上一代 MV 驱动器的成功基础之上,采用同样严格的设计规则和质量控制/质量保证 (QC/QA) 实践。MV1000 的组件数量也减少了。随着现场使用单位和小时数的增加,MV1000 将超越上一代 MV 驱动器已经非常出色的性能。
标准电缆入口位于后底部。但是,如果需要电缆,入口可以从上方,但面板的深度会增加。如果不首先满足配电板的安全联锁程序,则无法进入此隔间。此隔间内还设有: ・ 接地开关 ・ 零相电流互感器 ・ 浪涌抑制器 ・ 电压和电流互感器
一般交流驱动器布置 每个交流驱动器都包括交流市电电源和负载之间的三个主要部分。如图 1 所示。转换隔离并将市电电压更改为转换部分的电平和配置。转换部分将转换后的市电电压转换为可调电压、可调频率的交流电压,以匹配所连接负载的速度和扭矩要求。利用部分由交流电机和机械设备(如齿轮和联轴器)组成。驱动器转换部分包括直流转换、能量存储和切换。驱动器的转换部分使用半导体组合将市电电压转换为直流电压和电流。此直流电存储在电感器或电容器中,然后传递到切换部分。切换部分将存储的直流电压或电流连接到交流电机的连续相中。频率、电压和电流经过调节以满足负载的需求。
公共报告信息收集负担估计为每份回复平均 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至华盛顿总部服务部、信息运营和报告理事会,地址:1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息未显示当前有效的 OMB 控制编号,则任何人都不会因未遵守信息收集而受到处罚。
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 目的本论文的主要内容和论文组织 25 第 2 章 材料、实验装置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验匝间试样 31 2.2.4 接地壁试验样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验装置43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55