摘要:目前,肯尼亚主要依靠石油、地热能和水力资源发电,但这三种资源都存在相关问题。石油发电对环境有害、成本高昂,是国家贸易平衡的负担。水力发电站的河流及其支流位于干旱和半干旱地区,降雨不稳定,导致供电安全问题,地热开发存在成本和风险等问题。鉴于这些问题以及肯尼亚在光伏 (PV) 发电方面具有巨大但尚未充分开发的潜力,本文探讨了肯尼亚有限(尽管正在增长)的太阳能光伏开发,作为实现电力供应多样化和稳定化的手段。本文分析了将光伏纳入肯尼亚发电结构的潜力,以及限制光伏整合的社会技术、经济、政治、制度和政策障碍。我们认为,通过改进和加强政策法规、增加研发投资以及改善不同可再生能源使用的协调,可以克服这些障碍。最值得注意的是,需要结合存储解决方案和其他灵活性要素来平衡基于太阳能光伏发电的间歇性特征。
该政策的基础在于 2012 年的太空授权,指示 ACT 和 ACO 继续致力于发展北约内部的太空能力,因为 2011 年北约的总体太空政策未能实现。2012 年的工作计划奠定了基础工作,并于 2016 年进行了审查,随后于 2017 年制定了一项全面的行动计划,以推进这项工作。在战略司令部的指导和指导下,确定整合能力、确定任务关键差距、开发需求和提高整个北约的太空意识的最佳方式是在主要联合作战 (MJO) 演习中注入太空数据、产品和服务,以对太空支援概念进行压力测试和改进。因此,TRIDENT 系列演习被确定为最佳场地
不可调度的可再生能源(如光伏 (PV) 系统)在发电结构中的渗透率不断提高,对电力系统的运行性能提出了挑战。在需求方面,提高客户负载灵活性和电气化程度的先进方案将显著改变电力需求。此外,屋顶安装的光伏系统会改变其所连接建筑物的电力需求,因为所产生的电力首先服务于建筑物的电力负载,从而影响电网所经历的所谓净负载。本论文研究增强分散太阳能光伏电力与电力系统集成的解决方案,特别关注概率和多变量预测以及基于此类预测的控制框架。此外,本论文还通过太阳能光伏逆变器的无功功率控制来评估电压控制。使用静态和动态预测模型生成概率太阳能、负载和净负载预测,其中后者可减少约 99% 的计算时间,并提高校准和锐度,但降低预测分辨率。随后,动态预测模型用于研究客户空间聚集对预测密度的影响,从而提高校准和清晰度。有趣的是,在聚集少数客户时,积极影响已经显而易见,这可以改善社区层面的决策。还研究了时间和时空轨迹形式的多元预测,其中多元分布由 copula 表示。具体而言,结果表明,经验 copula 特别适合高维时空预测,而高斯 copula 非常适合具有较大预测范围的时间预测。此外,该论文开发了基于场景的随机模型预测控制算法的增强版本,该算法实现全局最优控制动作(如果存在)而不是独立最优控制动作的期望,从而更有效地管理预测误差。最后,将基于种群的搜索方法应用于无功功率控制,该方法能够明确且独立地模拟分散太阳能光伏逆变器之间的空间和时间关系,从而以比基准更小的种群获得更好的电压曲线。总之,本文表明,可以使用多种方法改进预测,例如,通过空间聚合客户、结合光伏发电和用电量、预先选择信息预测因子或对预测进行后处理。反过来,预测准确性的提高可以增加其在诸如最优控制问题等应用中的价值,从而改善城市能源系统中的太阳能光伏集成。