1 中国科学院高能物理研究所,北京 100049;tanyuhang@ihep.ac.cn (YT);yangtao@ihep.ac.cn (TY);liukai@ihep.ac.cn (KL);wangcc@ihep.ac.cn (CW);zhangxiyuan@ihep.ac.cn (XZ);zhaomei@ihep.ac.cn (MZ);fanrr@ihep.ac.cn (RF) 2 中国科学院大学物理学院,北京 100049 3 大连理工大学微电子学院,大连 116024;xiaochuan@dlut.edu.cn (XX);hwliang@dlut.edu.cn (HL);xrl@mail.dlut.edu.cn (RX) zhangzz@dlut.edu.cn (ZZ) 4 辽宁大学物理学院,沈阳 110036,中国;yuzhao@ihep.ac.cn (YZ); kangxiaoshen@lnu.edu.cn (XK) 5 吉林大学物理学院,长春 130012,中国;fucx1619@mails.jlu.edu.cn (CF); weiminsong@jlu.edu.cn (WS) 6 散裂中子源科学中心,东莞 523803,中国 7 上海科技大学信息科学与技术学院,上海 201210,中国;zouxb@shanghaitech.edu.cn * 通讯作者:shixin@ihep.ac.cn
衍射法可揭示有关晶相体积分数、纹理和残余应力的信息,而断层扫描可提供材料微观结构的互补三维图像。衍射和断层扫描在定制材料设计、加工和寿命评估领域的影响越来越大。光谱学可提供有关化学键合细节的独特信息,并有助于理解原子间的相互作用。目前,工程材料科学对光子和中子的利用情况发展迅速:光子和中子源的通量增加,现有光束线和仪器的翻新以及设计和建造具有优化光束光学和位置敏感探测器的新光束线和仪器,以及数据质量和数量的提高。
虽然TiB 2 基复合材料的各种优异性能及制备方法已被广泛研究,但是其中子屏蔽性能尚未受到足够的重视。本文将对先前制备的TiB 2 -Al复合材料的中子屏蔽性能进行研究。利用光中子源装置对厚度为10 mm 的试验样品进行中子辐照试验。TiB 2 基含硼复合材料的平均热中子屏蔽率为17.55%,且屏蔽率随BN含量的增加而增大。复合材料的热中子宏观截面总体呈现稳定趋势,当BN含量为10%时,热中子宏观截面达到最大值7.58cm -1 。随着BN含量的增加,热中子注量率呈现逐渐减小的趋势。
英国在加速器科学研究和开发方面仍占有重要地位,为欧洲散裂中子源、欧洲核子研究中心的 HL-LHC 和美国费米实验室的 PIP-II 等重大国际项目做出了贡献。英国国内和国际的下一代研究基础设施将具有更具挑战性的性能规格,并将继续推动创新。加速器技术的进步有可能对英国经济和更广泛的社会产生影响,包括加速器的医学应用;保持英国在加速器研究和开发方面的能力和能力对英国具有关键的战略意义。我们还认识到,下一代加速器的性能在建造和运营方面必须是可持续的和低碳的。
辐照在德国奥伊斯基兴的“弗劳恩霍夫自然科学技术趋势分析研究所”进行,使用最大剂量率为 720 krad/h 的 60 Co 源和单独的中子源。同位素 60 Co 经 β 衰变为 60 Ni,半衰期约为 5.3 年,后者通过发射能量为 1.172 MeV 和 1.332 MeV 的伽马射线衰变为镍的基态 [3]。弗劳恩霍夫 INT 的 THERMO-Fisher D-711 中子发生器通过以 150 kV 的电压将氘离子 (D = 2H) 加速到氘或氚靶 (T = 3H) 上来产生中子。在靶内发生DD或DT核聚变反应,分别释放氦同位素3He和4He,以及能量分别为2.5MeV和14.1MeV的快中子[4]。3.被测装置
《先进材料表征技术》课程主要讲授光子(同步辐射X射线)、电子和中子的成像、衍射和光谱的物理原理和定量分析,以及它们在半导体、能源材料、化学工程、建筑、信息技术和航空航天等工业领域的应用。从空间分辨率、能量分辨率、时间分辨率、检测灵敏度和效率等方面,比较了同步辐射X射线源、散裂中子源和像差校正电子显微镜等先进仪器设备中的各种表征技术,以展示它们在获取晶体结构、原子位置、电子结构、自旋结构、元素分布、磁性、化学键和动力学演化等信息方面的优缺点。这些知识指导学生选择合适的表征技术来研究材料的目标结构并理解其在工业应用中的结构-性能关系。
2018 年,尼日利亚成功将微型中子源反应堆 (MNSR) NIRR-1 从可用于武器的高浓缩铀 (HEU) 转换为低浓缩铀 (LEU)。将世界各地的研究反应堆燃料从 HEU 转换为 LEU 是国际社会为尽量减少 HEU 的民用用途并降低相关安全和扩散风险而做出的努力的一部分。该转换项目由尼日利亚原子能委员会 (NAEC) 和国际原子能机构 (IAEA) 发起,并得到了中国、挪威、英国和美国能源部国家核安全局 (NNSA) 的支持。NIRR-1 的转换使超过 1 公斤的中国产高浓缩铀 (HEU) 得以成功运回,从而使尼日利亚不再使用 HEU。五年后,NIRR-1 继续为尼日利亚提供宝贵的科学见解。
封面显示了我们对Fe/Si + 11 B 4 C(前)和Fe/Si(后)多层的研究结果。可以比较电子衍射图像,Gisaxs原始数据和X射线反射率(也可以用于艺术目的)。也可以在反射率曲线之间的区域内显示多层的示意图。,fe/si + 11 b 4 c(前)代表未来,而fe/si(背面)描绘了过去。此外,艺术品也可以看作是电子衍射图像中心中的中子源,而gisaxs和XRR则展示了更改梁特性的外向光束和光学元件,在梁的末端,您会找到样品本身,模仿我研究的中心部分。封面的脊柱还显示了Fe/Si + 11 B 4 C(上)和Fe/Si(下图)多层的TEM图像。
在核聚变能源路线图中,示范核聚变反应堆 (DEMO) 将在 ITER 之后建成。DEMO 的建设将于 2040 年左右开始,这对成功开发抗中子材料提出了严格的时间要求,因为这些材料必须在 DEMO 设计完成之前获得认证。除了已经在裂变谱中观察到的位移损伤之外,一个关键问题是氦脆化对材料的影响,对于高能中子来说尤其重要。虽然全性能国际聚变材料辐照设施 (IFMIF) 提供了理想的聚变中子源装置,正如快速通道方法中已经确定的那样,用于测试达到聚变发电厂 (FPP) 预期的辐射损伤水平的材料,但根据当前欧洲路线图,DEMO 的时间表规定,测试必须比目前预计的完整 IFMIF 更早开始。
在核聚变能源路线图中,示范核聚变反应堆 (DEMO) 将在 ITER 之后建成。DEMO 的建设将于 2040 年左右开始,这对成功开发抗中子材料提出了严格的时间要求,因为这些材料必须在 DEMO 设计完成之前获得认证。除了已经在裂变谱中观察到的位移损伤之外,一个关键问题是氦脆化对材料的影响,对于高能中子来说尤其重要。虽然全性能国际聚变材料辐照设施 (IFMIF) 提供了理想的聚变中子源装置,正如快速通道方法中已经确定的那样,用于测试达到聚变发电厂 (FPP) 预期的辐射损伤水平的材料,但根据当前欧洲路线图,DEMO 的时间表规定,测试必须比目前预计的完整 IFMIF 更早开始。