carlo.cazzaniga@mib.infn.it 关键词:闪烁体;伽马射线能谱;快中子;燃烧等离子体 摘要 在弗拉斯卡蒂中子发生器上测量了 3''x3'' LaBr 3 (Ce) 闪烁体对 14 MeV 中子辐照的响应,并通过专用的 MCNP 模型进行了模拟。发现有几种反应会影响测量的响应,其中中子非弹性散射和 79 Br、81 Br 和 139 La 同位素的 (n,2n) 反应起着关键作用。在实验阈值 0.35 MeV 以上,对 14 MeV 中子检测的总效率为 43%,并通过测量进行了确认。还观察到了晶体的辐射后活化,并根据 (n,2n) 反应中产生的短寿命 78 Br 和 80 Br 同位素的核衰变来解释。本文提出的结果与下一代燃烧等离子体聚变实验(如 ITER)中 γ 射线探测器的设计有关,这些实验需要在 14 MeV 强中子通量下进行测量。
- 可以更快、更便宜地购买 COTS 组件 - 辐射结果的可靠性更高 - 可以使用 COTS 组件为更快、更经济高效地开发太空任务做出贡献(ESA - 发展目标:到 2023 年与 2018 年相比增长 30%) - 支持通过 COTS 组件集成新技术 - 提供最先进的测试设施和测量工具。辐照设施包括三台钴-60 伽马辐照设施(点几何;剂量率:10 µGy/s 至 2 Gy/s)、两台中子发生器(能量:2.5 和 14 MeV;中子通量:在 4π 中高达 3·1010 n/s)、一台 450 keV X 射线设施、一台用于 SEE 研究的激光器(波长:1064 nm,脉冲长度:9ps,能量:高达 200 µJ/脉冲)、一条专用质子辐照光束线(能量:39 MeV 至 2 GeV)以及钴-60 高剂量辐照(MGy)的可能性。
I. 对人体的辐射剂量 130 � II. 来自废弃地下核试验场的核素 131 � III.与全面禁核试条约核查有关的颗粒放射性核素 133 � 类别 1. 燃料材料的残留物 136 � 类别 2. 燃料材料的非裂变反应产物 139 � 类别 3. 裂变产物 141 � 类别 4. 非燃料弹材料的活化产物 142 � 类别 5. 地下爆炸周围的填塞(填充)材料和岩石中的活化产物 143 � 类别 6. 近地表大气爆炸下方地面中的活化产物 144 类别 7. 水下或近海面爆炸周围海水中的活化产物 144 � 类别 8. 大气爆炸周围空气中的活化产物 144 � 类别 9. 来自中子通量探测器的活化产物 145 � 类别 10. 添加的示踪剂 145 � 制定全面禁核试条约相关颗粒放射性核素最终清单核素 146 � IV. 与《全面禁试条约》国际监测系统有关的惰性气体放射性核素 153 � V. 与现场视察有关的颗粒和气体核素 154 �
其中一些自建造以来就经过了修改、升级和翻新,以满足更高中子通量的要求。然而,其中一些老化的研究反应堆仍在使用其原有的仪表和控制系统 (I&C) 运行,这些系统对于反应堆安全非常重要,可以防止异常事件发生以及涉及启动、关闭和功率调节的反应堆控制。磨损和过时的 I&C 系统会导致运行问题以及难以获得替换零件。此外,要满足核监管机构规定的严格安全条件,需要对研究反应堆 I&C 系统进行现代化改造,并将额外的仪表单元集成到反应堆中。过去几年,I&C 系统的技术进步迅速,研究反应堆界应该采用这项技术。随着微处理器和个人计算机的使用增加,对高水平复杂度和可靠性的要求也随之提高,以满足各种操作和安全要求。这要求研究反应堆运营商在规划如何改进老化研究反应堆的仪表和控制时,以及在建造新设施时做出适当选择时,必须仔细考虑。为了澄清这些问题,并为反应堆运营商提供一些关于研究反应堆仪表和控制系统的最新技术和未来趋势的指导,1995 年 12 月 4 日至 8 日在斯洛文尼亚卢布尔雅那举行了研究反应堆仪表和控制技术和趋势技术委员会会议。
其中一些自建造以来就经过了修改、升级和翻新,以满足更高中子通量的要求。然而,其中一些老化的研究反应堆仍在使用其原有的仪表和控制系统 (I&C) 运行,这些系统对于反应堆安全非常重要,可以防止异常事件发生以及涉及启动、关闭和功率调节的反应堆控制。磨损和过时的 I&C 系统会导致运行问题以及难以获得替换零件。此外,要满足核监管机构规定的严格安全条件,需要对研究反应堆 I&C 系统进行现代化改造,并将额外的仪表单元集成到反应堆中。过去几年,I&C 系统的技术进步迅速,研究反应堆界应该采用这项技术。随着微处理器和个人计算机的使用增加,对高水平复杂度和可靠性的要求也随之提高,以满足各种操作和安全要求。这要求研究反应堆运营商在规划如何改进老化研究反应堆的仪表和控制时,以及在建造新设施时做出适当选择时,必须仔细考虑。为了澄清这些问题,并为反应堆运营商提供一些关于研究反应堆仪表和控制系统的最新技术和未来趋势的指导,1995 年 12 月 4 日至 8 日在斯洛文尼亚卢布尔雅那举行了研究反应堆仪表和控制技术和趋势技术委员会会议。
摘要该论文报告了对射射HALL探针(RHP)磁性诊断系统的系统评估,该诊断系统基于INSB半导体薄膜,并描述了导致创新磁探针概念的建议的路径。在最近的氘 - 帝国实验运动中,RHP操作的相关说明还提供了,显示了在类似Iter的强烈中子通量下正确的操作。对RHP系统进行系统评估的期间范围从2009年10月到2021年3月,在此期间,该机器产生了超过19,000个脉冲。RHP系统由六个三维大厅探针组成,这些探针具有内置的重新校准能力,这要归功于在量身定制的自动预脉冲预校准序列中产生局部已知场的微糖苷,也可以手动启动。在脉冲过程中,当记录其信号时,微苯酚也可以用作电感传感器。此外,该系统在探针位置提供了温度测量值,这些温度也被连续记录。评估证明了RHP系统的准确长期操作。所有诊断通道可靠地提供脉冲预校准数据和脉冲信号,并且保留了霍尔传感器的原始灵敏度。混合探针有望提供感应和霍尔传感技术的优势,本质上是单个ITER磁性离散探针的相同包装大小。,它将解决积分器漂移的问题,以解决持久的燃烧等离子体排放。集成考虑和数据融合分析导致提出高性能,紧凑,宽带,混合场探针,由电感线圈和HALL传感器组合组成,由为迭代或替代性概念开发的线圈技术制造,并具有改善的辐射热度。通过Luenberger-Kalman观察者处理的线圈和霍尔传感器产生的信号提供了一个磁场测量值,该测量值是不钻孔和低噪声的。由于这些原因,已提出混合探针作为未来燃烧的血浆实验和示范融合发电厂的潜在主要磁性诊断传感器。
目前,该设施用户主要关注的两个领域是核物理(主要是探测器测试)和微电子学。由于该平台的高通量,尤其是自从安装了 ECR 源以来,该平台特别适合微电子领域的辐照。GENESIS 平台目前提供法国最高的 14 MeV 中子通量。自 2017 年以来,它是一个 IN2P3 平台。平台访问平台活动由学术研究(“科学”)和商业活动(“辐照”)共享。来自公共实验室或私营公司的用户可以在一年中的任何时候通过 genesis@lpsc.in2p3.fr 提出光束请求(通过表格),因为该设施没有 PAC。平台的便捷访问是其主要资产之一。然而,光束优先用于学术研究。设施的运行计划以 6 个月为一个周期,考虑到平台开发(停机时间、维护、操作人力……)或用户(可用性、中子能量、所需强度或通量……)的限制。运行时间仅限于办公时间(周一至周五上午 8 点至下午 6 点),每年约 130 天。该平台必须在科学出版物中引用,报告在该设施获得的结果。网络 GENESIS 平台于 2016 年加入 IRT(Institut de Recherche Technologique)Nanoélec 的特性描述计划。特别是它属于格勒诺布尔高级特性描述平台 (PAC-G),汇集了 ILL、ESRF、CEA/Leti 和 LPSC,为微电子和纳米电子工业提供材料特性描述商业服务的共同切入点(https://pac-grenoble.eu/)。它还是欧洲核子研究中心 (CERN) 管理的欧洲培训网络 RADSAGA(太空、航空地面和加速器用电子产品的辐射和可靠性挑战)的合作伙伴(https://radsaga.web.cern.ch/),并正在申请加入以下 RADNEXT 计划作为跨国访问。最后,GENESIS 被纳入由 CERN 管理的全球辐照设施数据库(https://irradiation-facilities.web.cern.ch/)。对于核物理界,GENESIS 是 EURATOM 项目 ARIEL(加速器和研究反应堆教育和学习基础设施,2019-2022)的一部分,作为核数据界的跨国访问。它也被列入 ENSAR2 计划的 NUPIA(核物理创新)网络。一些出版物/通讯:
ins6tut laue-langevin Ph.d奖学金“磁成功耦合3”是FEPS 3中的Phonon耦合。该项目结合了先进的冷凝物质计算和最先进的中子散射实验,以研究分层的范德华化合物中磁性和晶体晶格振动之间的相互作用。联系人:合作。托马斯·奥尔森(Thomas Olsen)教授,dtu tolsen@fysik.dtu.dk,Andrew Wildes博士,伊利诺斯(Wildes@ill.fr)博士学位,博士提供了一个独特的机会,可以使用两种第一原理理论方法和中子散射技术在两维材料中对磁性进行尖端研究。该职位将为您提供学术界职业的理想起点,您将获得计算固态物理和最新中子散射方法的高级技能。您正式隶属于这两个机构,但将在ILL雇用并在DTU招募。该项目的主题是分层的van der waals化合物FEPS 3中的磁子和声子之间的复杂相互作用。目前,这些类型的化合物对它们可能被分层为一个原子层,类似于石墨烯。feps 3特别有趣,因为它具有本质上的磁性,可深入了解低维度中的基本磁性,并具有在基于石墨烯的技术中应用的潜力。该化合物也具有高度的磁性性,在磁性和晶体结构之间具有强耦合。该项目结合了两个主要机构的资源。理解化合物特性的关键在于晶格晶格振动(称为声子),被称为磁子(称为镁元),尤其是它们之间的相互作用。目前,这种相互作用在凝聚的物理学中对此尚不清楚。在FEPS 3中研究它们将导致对其物理特性的理解,并将作为更好地理解磁晶格耦合的基础。您将通过以第一原理计算建模为指导的非弹性中子散射实验来研究FEPS 3中的镁 - 光子相互作用。在法国短暂的整合期之后,将在项目开始(六个月)的某个时间上花费在DTU上,专注于学习和应用密度功能理论以分析磁通光谱。剩余时间(2。5年)将用于不良表现和分析中子散射实验,这将不受第一原理模拟的持续支持。因此,在整个项目期间,实验与理论之间将存在很强的相互作用。dtu是全球领先的技术大学,以其研究,教育,创新和科学建议的卓越表现。ILL是中子科学技术领先地位的国际研究中心,经营具有异常高的中子通量和约40个尖端仪器的中子来源。您将成为来自欧洲各地的充满活力和凝聚力的学生的一部分,这些学生有定期的社会和发展活动,并在法国阿尔卑斯山脚下的一个国际化城市体验生活。该项目将使您能够建立研究方向并在欧洲建立联系和合作者网络,并且是磁性和中子散射或以后的职业生涯的绝佳跳板。有关更多信息,请联系:协会。托马斯·奥尔森教授(tolsen@fysik.dtu.dk)
核聚变是一种众所周知的能源,它有可能为人类的未来提供可持续、环保、可调度的高功率密度能源供应解决方案。目前,利用核聚变能最有前途的方法是基于专门设计的环形装置内的磁约束高温等离子体 [1]。对热核磁约束聚变的持续研究推动了当前示范聚变反应堆 (DEMO) 的设计活动,该反应堆预计将作为所谓的托卡马克型反应堆实现 [2]。实现 DEMO 反应堆的一个主要挑战是设计和制造高负荷等离子体面对部件 (PFC),这些部件必须在聚变运行期间承受强烈的粒子、热量和中子通量 [3]。对于此类 PFC,需要特定的高性能材料才能设计出可靠的部件。对于直接面对聚变等离子体的材料,钨 (W) 目前被认为是未来磁约束热核聚变反应堆的首选等离子体面对材料 (PFM)。这主要是因为 W 表现出较高的溅射阈值能量,以及作为聚变反应燃料的氢同位素的低保留率 [4]。对于 DEMO 反应堆中的 PFC,一个特别关键的方面是瞬态壁面负载,例如,由于托卡马克中的等离子体不稳定性而产生的瞬态壁面负载。此类瞬态事件可能导致 PFC 上出现非常强烈的热负载(数十 GW/m 2,持续时间为几毫秒),进而严重损坏反应堆的包层结构 [5]。为了保护聚变反应堆的壁免受此类事件的影响,目前正在研究特定的限制器 PFC。这些组件预计将阻挡到达反应堆壁的短暂而强烈的热脉冲,以使这些限制器组件后面的包层结构不会热过载或损坏。这种限制性 PFC 的一种可能的材料解决方案是使用定制的多孔 W 材料。利用这种超材料,可以实现将由于结合了多孔性而具有的总体低热导率与 W 的有益等离子体壁相互作用特性相结合的组件。然而,W 是一种难以加工的材料,因为它本质上是一种硬而脆的金属,这意味着加工 W 既费力又昂贵。针对这些限制,增材制造 (AM) 方法代表了一种实现几何复杂的 W 部件的通用方法。AM 工艺的特点是,在计算机控制下通过逐层沉积材料来创建三维物体,这意味着使用这种方法可以直接实现具有高几何复杂性的部件。近年来,利用激光粉末床熔合 (LPBF) 技术对金属进行 AM 加工已取得重大进展,该技术无需粘合剂相即可对多种金属进行直接 AM 加工。在 LPBF 加工过程中,原料粉末材料通过聚焦在粉末床上的激光束选择性地熔化和固结 [6]。封面图片展示了通过 LPBF 制造的具有定制晶格结构的 W 样品的顶视图。目前正在针对如上所述的限制器 PFC 研究此类多孔 W 晶格。图示样品是一种晶格结构,它源自基于十四面体重复(开尔文模型)的参数固体模型。这种模型过去也应用于开孔铝泡沫 [7] 并得到验证。图示 W 晶格的参数