海洋与地球科学,南安普敦大学,南安普敦,英国B海洋科学学院 Sciences, University of California, Los Angeles, Los Angeles, California f Department of Geosciences, Tel Aviv University, Ramat Aviv, Israel g Woods Hole Oceanographic Institution, Woods Hole, Massachusetts h National Oceanography Centre, Southampton, United Kingdom i British Antarctic Survey, Cambridge, United Kingdom j NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey k Program in Atmospheric和海洋科学,普林斯顿大学,新泽西州普林斯顿大学
中尺度涡旋对海洋温度和盐度结构产生重大影响,从而改变生态环境和声传播特性。先前对中尺度涡旋效应下声传播的研究主要集中于碎片化的、快照式的分析。而本研究采用整体的方法,通过整合多源数据来阐明海洋温度和盐度结构,最终影响它们的生态环境和声传播。与现有论文相比,本研究采用了更全面、更连续的方法。通过融合多源数据,本研究引入了一种创新的中尺度涡旋跟踪算法和增强的高斯涡旋模型。利用BELLHOP射线理论模型,本研究研究了西北太平洋一个气旋涡旋和一个表现出完整生命周期的典型反气旋涡旋(CE-AE)对的声场特征。结果表明,中尺度涡旋的整个生命周期对声场环境产生显著的影响。随着CE的增强,汇聚区(CZ)距离减小,CZ宽度扩大,直达波(DW)距离缩短。相反,增强的AE会使CZ距离增加,CZ宽度收缩,DW距离延长。本文定量分析了影响涡旋生命周期的关键因素,结果表明涡旋强度和变形参数都显著影响声传播特性,其中涡旋强度的影响更大。本研究对海面测高数据在水下声学研究中的应用具有重要的贡献,并对典型中尺度涡旋环境中涡旋参数对水下声传播的影响提供了初步认识。此外,这项研究为未来研究海洋系统中涡流动力学和声传播之间的复杂关系奠定了基础。
图2。夏季每日最大HI(O C)(Abscissa)与EHI(O C)(o c)(a坐标)(a,d,g)la,(b,e,h)fl和(c,f,i)cu的散点图。(A-C)基于GCM输出,该输出已通过MBC在历史时期(1985-2014)进行了调整。 (d-f)与(A-C)相同,除了不久的将来(2031-2060)。 (g-i)与(d-f)相同,但遥远的未来(2071-2100)。 未来值基于SSP585方案。 y = x线在青色中显示。 每个点(黑色或红色)代表夏季的一个夏日。 基于双重重量标准偏差(Lanzante,1996)的6个标准偏差的点以红色给出。(A-C)基于GCM输出,该输出已通过MBC在历史时期(1985-2014)进行了调整。(d-f)与(A-C)相同,除了不久的将来(2031-2060)。(g-i)与(d-f)相同,但遥远的未来(2071-2100)。未来值基于SSP585方案。y = x线在青色中显示。每个点(黑色或红色)代表夏季的一个夏日。基于双重重量标准偏差(Lanzante,1996)的6个标准偏差的点以红色给出。
摘要:气候模型代表热带风暴轨迹的能力对于提供有用的预测至关重要。在先前的工作中,发现北半球的热带风暴轨迹的表示已从耦合模型比较项目(CMIP)的第5阶段改善。在这里,我们通过将仅大气模拟(AMIP6)与历史库型模拟(CMIP6)进行了对比,从而研究了CMIP第6阶段模型中的剩余和持久偏差。对AMIP6和CMIP6模拟的比较表明,冬季跨北部Paci -fean的耦合模拟中海面温度(SST)的偏见改变了大气温度梯度,这与风暴轨迹的赤道偏置有关。在北大西洋中,旋风在耦合的模拟中没有足够的杆子传播,该模拟部分是由格陵兰岛南部的冷SST驱动的,从而减少了潜在的热量。在夏季,中亚和藏族高原的过度加热会降低当地的斜压性,导致更少的气旋形成并从中国东部传播到耦合和大气中的模拟物中。当规定SST时,耦合模型中描述的几种偏差大大减少。例如,北极风暴轨迹的赤道偏置显着减少。然而,在CMIP6和AMIP6中,其他偏见都显而易见(例如,夏季东亚的轨道密度密度和循环发生的持续降低)与其他过程有关(例如,土地表面温度)。
摘要:我们评估了一组模型中的中尺度搅拌的表示,以根据北大西洋示踪剂释放实验(Natre)收集的微结构数据得出的估计值。我们从法拉利和波尔津的大约温度差异预算框架中大量汲取灵感。该框架假设温度差异的两个来源远离边界:首先,大规模平均垂直梯度通过小规模的湍流垂直搅拌;其次,中尺度涡流对大规模平均层梯度的横向搅拌。温度差异被转化,并以微观结构观测值估算的速率x进行平均转移量表以在微观尺度上进行最终耗散。海洋模型通过垂直混合参数化代表这些途径,以及沿等副侧面混合参数化(如果需要的话)。我们评估后者作为Natre数据集的残差的差异速率,并在一组模型模拟中与参数化表示形式进行比较。我们发现,由于在平行的海洋程序2(POP2)1/10 8模拟中,横向搅拌引起的变量产生很好地同意,并且在估计的误差栏内,并根据NATRE估计推断出来。在其他扩散率估计值中不存在这种元素值,这表明在解释ECCOV4R4调整后的侧向扩散率时需要补偿错误和谨慎。pop2 1 8模拟以及估计海洋版本4版本4(ECCOV4R4)模拟的循环和气候模拟似乎通过应用横向扩散率来消散数量级过大的差异,与NATRE估计相比,尤其是低于1250 m。 ECCOV4R4-调整后的横向扩散率升高,而微观结构表明X升高来自中尺度搅拌。
抗病毒 DNA 胞嘧啶脱氨酶 APOBEC3A 和 APOBEC3B 是癌症突变的主要来源,它们催化胞嘧啶脱氨为尿嘧啶。APOBEC3A 优先靶向单链 DNA,对采用茎环二级结构的 DNA 区域具有明显的亲和力。然而,APOBEC3A 和 APOBEC3B 的详细底物偏好尚未完全确定,DNA 序列对 APO-BEC3A 和 APOBEC3B 脱氨酶活性的具体影响仍有待研究。在这里,我们发现 APOBEC3B 也选择性地靶向 DNA 茎环结构,它们与 APOBEC3A 脱氨的结构不同。我们开发了 Oligo-seq,这是一种基于体外测序的方法,用于识别促进 APOBEC3A 和 APOBEC3B 活性的特定序列环境。通过这种方法,我们证明了 APOBEC3A 和 APOBEC3B 脱氨酶活性受到目标胞嘧啶周围特定序列的强烈调控。此外,我们还确定了 APOBEC3B 和 APOBEC3A 的结构特征,这些特征决定了它们的底物偏好。重要的是,我们确定了肿瘤基因组内发夹形成序列中 APOBEC3B 诱导的突变与 APOBEC3A 突变的 DNA 茎环序列不同。总之,我们的研究提供了证据,表明 APOBEC3A 和 APOBEC3B 可以在癌症基因组中产生不同的突变景观,这是由它们独特的底物选择性驱动的。
摘要。由于长期运行高分辨率模型的高计算成本,因此气候变化的模型投影通常不包括解决方案良好的海洋尺度。这项挑战是使用效率最大化的建模策略来应对的,该策略适用于过去,现在和自由气候的3公里模拟。模型设置利用了降低分辨率的旋转和瞬态模拟,以在短时间内初始化区域性的高分辨率海洋模型。将结果与卫星高度学数据和更传统的涡流仿真进行了比较,并根据其复制观察到的中尺度效果的能力进行了评估,并揭示了对与自然变异性不同的气候变化的反应。高分辨率模拟良好地产生了观察到的南洋涡流能量(EKE)的幅度,但局部大小和EKE的分布仍然存在差异。较粗糙的涡流集合模拟了类似的EKE模式,但主张不足的水平观察到了55%。在变暖的大约1°C时,高分辨率模拟不会导致整体EKE的变化,而与完全合奏在涡流模拟中的EKE同意相比。在变暖的大约4°C下,两个数据集都以相对术语增长了EKE的一致水平,尽管不是绝对幅度,并且EKE变量的增加。模拟的Eke上升集中在已经知道的地区的流动范围
摘要肌萎缩性侧硬化症会影响上和下运动神经元,从而导致进行性神经病理学,从而在症状发展前很久就会导致受影响神经网络的结构和功能改变。某些遗传突变,例如C9ORF72中的扩张,使运动神经元群体诱发病理功能障碍。但是,尚不清楚潜在的病理倾向如何影响脆弱网络内的结构和功能动力学。在这里,我们研究了ALS患者衍生的运动神经元网络的微观和中尺度动力学。我们首次表明,ALS患者衍生出具有内源遗传易感性的运动神经元,以细胞质TDP-43夹杂物的形式发展出经典的ALS细胞病理学,并自组织为计算效率高效的网络,尽管具有与健康的对照组相比具有更高的代谢成本的功能标志。这些标志包括微观障碍和中尺度补偿,包括功能集中度增加。此外,我们表明这些网络通过表现出诱导的多动症而极易受到短暂扰动的影响。
计算机架构中的传统建模方法旨在获得处理器设计的性能,区域和能量的准确估算。随着规范执行攻击的出现及其安全问题,这些传统的建模技术在用于针对这些攻击的防御措施的安全评估时,这些传统建模技术不足。本文提出了Pensieve,这是一个针对早期Mi-Croarchitectural Defenses to to to tosulative decution攻击的安全评估框架。在核心上,它引入了一种系统研究早期防御的建模学科。此学科使我们能够覆盖功能等效的设计空间,同时由于资源争议和微体系优化而精确地捕获正时变化。我们实现了模型检查框架,以自动找到设计中的漏洞。我们使用笔迹来评估一系列最先进的猜测防御方案,包括延迟失误,Invisispec和Ghostminion,以正式定义的安全性属性,投机性非干扰。pensieve在所有这些防御方面都发现了类似Spectre的攻击,其中包括一种新的投机干扰攻击变体,它破坏了Ghostminion,这是最新的防御力之一。