在本文中,我们提出了从机器学习管道中逐步收获并查询任意元数据的技术,而不会破坏敏捷实践。我们将方法集中在开发人员偏爱的技术上,用于生成元数据 - 日志语句 - 利用日志记录创建上下文的事实。我们展示了视觉记录[8]如何允许在事后添加和执行此类陈述,而无需开发人员远见。可以查询不完整元数据的关系视图,以在多个版本的工作!OWS中动态实现新的元数据,并按需按需。这是以“以后的元数据”样式完成的,o”敏捷开发的关键道路。我们在称为FlordB的系统中意识到了这些想法,并演示了数据上下文框架如何涵盖一系列临时元数据以及定制功能商店和模型存储库今天处理的特殊情况。通过使用情况(包括ML和人类反馈),我们说明了组件技术如何融合以解决敏捷性和纪律之间的经典软件工程交易。
在本文最初发表的版本中,图 4a 中 A549 细胞和图 6b 中 NH 2 -null LAAM TC-CQDs 组显微照片的设置存在错误。原始图片和更正后的图片如下所示。我们还被告知补充信息中的几张图片存在错误。特别是,我们在补充图 20 中意外地使用了几组重复的 RWPE-1、HL-7702、CCC-HPE-2 和 CCC-HIE-2 细胞系图像,在补充图 29 中体内荧光图像下的小鼠图像(一些图像从补充图 56 中重复;在此图中,我们还为 TPTC 组的 0 小时时间点和 TPTC/LAAM TC-CQDs 的 6 小时时间点选择了不正确的图像),在补充图 30 中切除的小鼠器官(一些图像从补充图 38 中重复),以及在补充图 61 中 TPTC/LAAM TC-CQDs 组的心脏和脾脏图像(两张显微照片与盐水组的有重叠)。这些补充图的原始版本和更正版本也在下面重现。所有这些错误都是在从我们使用的核心设施中获取、处理和存储的大量图像数据集中选择代表性图像时发生的。
纠缠是量子力学的基础,也是新量子信息革命的基础。纠缠表明非局部关联超出了任何局部现实模型所能达到的范围。20 世纪 60 年代,约翰·贝尔 (John Bell) 设计了一种检验方法,通过指定一个在两个模型中具有不同最大界限的量,将此类隐变量理论与量子力学理论区分开来 [1]。自问世以来,贝尔检验一直是物理学基础研究的重点,它提供了一种手段来证明量子力学中的非局部效应 [2],验证纠缠的存在 [3],甚至探索超非局部理论的极限,这种理论可以预测比标准量子力学更强的关联 [4]。量子操控 [5-8] 等其他技术将纠缠验证的适用性扩展到了具有不同假设的更广泛场景。最初,这些非局域性测试被认为是“思想实验”,揭示了量子力学中意想不到的(或对某些人来说不合逻辑的)特征;然而,反复的实验验证了纠缠态标志性的关联性,毫无疑问,“鬼魅般的超距作用”是现实的一部分。这些测量技术的改进最终导致了使用贝尔不等式进行的三项“无漏洞”非局域性测试,提供了令人信服的证据,证明自然界确实是非局域的 [9-11]。与此同时,
同源重组 (HR) 与基因组复制有着密切的关系,无论是在修复可能阻止 DNA 合成的 DNA 损伤期间,还是在解决复制叉停滞时。最近的研究让我们想知道 HR 是否在复制真核寄生虫利什曼原虫的基因组中发挥着更为核心的作用。关于 HR 基因是否必需,出现了相互矛盾的证据,而全基因组图谱为 DNA 复制起始位点(称为起源)的非正统组织提供了证据。为了回答这个问题,我们采用了 CRISPR/Cas9 和 DiCre 的组合方法来快速生成和评估利什曼原虫中 RAD51 和三种 RAD51 相关蛋白的条件性消融的影响。使用这种方法,我们证明任何这些 HR 因子的丧失都不会立即致命,但在每种情况下,生长都会随着时间的推移而减慢,并导致 DNA 损伤和具有异常 DNA 含量的细胞的积累。尽管存在这些相似之处,但我们表明,只有 RAD51 或 RAD51-3 的缺失才会损害 DNA 合成并导致全基因组突变水平升高。此外,我们还表明这两个 HR 因子的作用方式不同,因为 RAD51 的消融(而不是 RAD51-3)对 DNA 复制有重大影响,导致主要起点处的起始丧失和亚端粒处 DNA 合成增加。我们的工作澄清了有关 HR 对利什曼原虫生存的重要性的问题,并揭示了 RAD51 在微生物真核生物基因组复制程序中意想不到的核心作用。
年度讲道格言 哥林多前书 16:14 31.01.24 “你真的知道我有多爱你吗?”“嗯——食物味道好极了——是的,我也用爱烹饪了它。”“爱——不只是一个词!”“不——爱——是言语和行为!”“是你的爱给了我稳定!”正是这种爱使一切跌倒和站立,保罗今天特别想向我们灌输这种爱,以及当时在公元 54 年在哥林多的会众灌输这种爱。在传教的旅途中,保罗见识了很多,了解了不同的文化和宗教,接触了一些已经认识耶稣的人,或者质疑他的人,甚至有意识地远离他的人。保罗不仅目睹了不满、冲突、动乱和不公,他还亲身感受到并经历了这些。这使得他更有必要陪伴自己所了解和建立的社区,哪怕距离很远。那时,人们仍然欣赏手写老式信件的价值。 尽管存在各种动乱和文化差异,但他在旅途中意识到了一件事 - 因此他在《哥林多前书》中写道:“无论做什么,都要怀着爱心去做!”因为爱是温柔和耐心的,它宽恕并寻找一条可行的道路。爱给人理解、倾听、怜悯,并能宽恕。保罗并没有把这句话放在信的中间,不,他故意以此结束这封信——以便给我们一个展望、一个鼓励,也为我们的旅程提供一个呼吁。无论做什么,都要满怀爱意地去做——我们不会这么快就忘记这句话,因为这是我们今年的座右铭。而这样做会一次又一次地提醒我们,当我们彼此相伴、彼此帮助时,有了爱,事情就会变得容易得多。我们能够从上帝的爱中获得生命,上帝在我们心中种下了爱的种子。保罗的话想要提醒我们爱的三位一体:我们从上帝对我们的关怀之爱中汲取力量。
序言 量子技术是一种新兴的范式,有望在未来几十年颠覆和革新计算、通信和传感。考虑到巨大的战略潜力和研究中意想不到的突破的可能性,仅来自各国政府的全球投资就超过 400 亿美元。在印度的背景下,印度政府的国家量子任务是加速该国在此领域研究的决定性一步。为了完成任务的任务,印度需要通过立即采取教学和培训措施来培养一支高技能的劳动力队伍。对这些劳动力进行的培训必须使他们达到全球标准,并同时满足量子技术发展的多学科需求——从核心硬件和后端工程支持到密码学和机器学习算法。因此,为了在印度创建一个蓬勃发展的量子培训生态系统,必须在本科和研究生阶段引入专门的课程,以及为参与本科和研究生教育的教职员工和教师开设课程。虽然具有国家重要性的机构已经开始了这方面的计划,但将这种培训扩展到全国更多的机构,使国家能够利用大量的学生资源,然后他们可以参与这项任务,加速实现目标。在此背景下,我们提出了本科阶段量子技术辅修课程的课程结构。在这里,我们认为量子技术包括所有四个垂直领域——量子计算和模拟、量子通信和密码学、量子传感、量子材料和设备。我们提出的课程至少涵盖 18 个学分。我们在这个课程中提出了理论和实验课程。我们假设每门课程为 3 个学分(1 个学分相当于理论课程每周 1 小时的课堂接触时间或实验课程 1 节 3 小时的实验室课程),从而使辅修课程至少涵盖 6 门课程。我们建议课程总学分超过 30 个学分,任何特定机构都可以根据该机构的教师情况从中选择 18 个学分。但是,为了保留辅修课程的核心任务,我们建议将几门课程设为必修课。我们相信,课程的这种灵活性将使机构能够轻松地开始在量子技术的一个或多个垂直领域培训学生。我们还认为,许多列出的课程也可以被不选择量子技术辅修课程的学生选为选修课。我们还鼓励机构和学生尽可能采用基于项目的学习方法,以增强课程的影响力。我们在设计课程时考虑到了机构的多样性以及不同的工程学科。我们相信所有工程学科的学生都可以从第三或第四学期开始选修这个辅修课程(假设 8 学期或 4 年制本科课程为标准格式)。选修这门课程的学生需要熟悉基础工程数学(基础线性代数、复数、概率和统计)和高中物理(牛顿定律、光学、热力学),以及编程基础知识(简单的算术运算,
LBA002 Targeting GSPT1 by a novel cereblon E3 ligase modulator for the treatment of Acute Lymphoblastic Leukemia Fatemeh Keramatnia 1 , Yunchao Chang 1 , Gisele Nishiguchi 1 , Jaeki Min 1 , Charles Mullighan 1 , Marcus Fischer 1 , Zoran Rankovic 1 , Fatemeh Keramatnia 1 .1田纳西州孟菲斯的圣裘德儿童研究医院。急性淋巴细胞白血病(所有),最常见的儿童癌症和成人第二常见的急性白血病,是由骨髓中未分化的淋巴前体细胞的克隆扩张引起的。尽管大多数儿童期所有病例都具有转录因子(TF)基因突变或重排的克隆遗传改变,但TF改变仍然是困难的治疗靶标。小分子诱导的蛋白质降解是一种新型策略,可以应用于当前不受限制的靶标,例如TF和融合癌蛋白。在此范式中,小分子降解器(Protac或Mocular Glue(MG))重定向细胞的内源性泛素蛋白酶体系统,并诱导靶蛋白或非本地蛋白质的泛素化或非本地底物E3依基酶(Neosubstrate)(Neosubstrate)(Neosubstrate)及其下层蛋白酶质量下生成。最近,据报道,CRBN E3连接酶调节剂CC90009在急性髓细胞性白血病中表现出有效的抗肿瘤活性,从而导致GSPT1(G1至S相变因子)为CRBN Neosubstrate。这些发现表明,MGS针对不同恶性肿瘤中意外漏洞的潜力。我们在一组代表性急性白血病细胞系中对MGL进行筛选,包括CRLF2-重新排列的所有细胞系MHH-CALL-4鉴定了几个活性MG,具有EC50 <5μm。在这里,使用确认的CRBN结合亲和力,使用结构上多样化和独特的MGS(Molecular Glue库(MGL)),我们试图通过表型和蛋白质组学方法鉴定新的CRBN调节剂。Lenalidomide竞争分析和MHH-CALL-4 CRBN击倒细胞证实了这些MGS的CRBN依赖性。在这些化合物中,SJ6986,沙利度胺驱动的磺酰胺在10多个在体外测试的所有细胞系中显示出有效的细胞毒性。TMT-MS蛋白质组学分析将GSPT1/2鉴定为具有高选择性的该化合物的主要靶标。我们接下来在一组衍生的异种移植物(PDX)中测试了SJ6986的活性,该患者具有IGH-CRLF2,EPOR,ATF7IP-JAK2 EX VIVO的重排。所有测试的肿瘤对IC50在纳摩尔范围内的SJ6986高度敏感。NSG小鼠中的PK分析表明SJ6986的迅速吸收和超过80%的口服生物利用度。PD研究在IGH-CRLF2 PDX中显示出治疗后48小时内GSPT1的剂量依赖性降解。 最后,我们检查了6种不同的PDX中SJ6986的抗肿瘤活性,代表所有人的高风险亚型,包括近单倍体,低h-高dip虫,CRLF2重键和重排,在体内28天。 在大多数肿瘤模型中, SJ6986能够以1 mg/kg剂量大大减轻肿瘤负担。 共同确认,SJ6986是一种新型的CRBN调节剂和潜在的治疗剂,它通过靶向具有高选择性和效力的GSPT1蛋白来治疗所有人。PD研究在IGH-CRLF2 PDX中显示出治疗后48小时内GSPT1的剂量依赖性降解。最后,我们检查了6种不同的PDX中SJ6986的抗肿瘤活性,代表所有人的高风险亚型,包括近单倍体,低h-高dip虫,CRLF2重键和重排,在体内28天。SJ6986能够以1 mg/kg剂量大大减轻肿瘤负担。共同确认,SJ6986是一种新型的CRBN调节剂和潜在的治疗剂,它通过靶向具有高选择性和效力的GSPT1蛋白来治疗所有人。