家庭自动化将技术、工程和用户体验 (UX) 融为一体。在此框架内,甚至神经科学也可以成为探索用户体验的宝贵学科。在这项研究中,我们首次使用神经科学方法强调了家庭自动化对用户认知和情感行为的一些独特影响。为了确定智能家居系统 (SHS) 对用户体验的可能影响,我们采用了神经科学多方法,目的是记录和对照 19 名个体在静息状态 (RS) 基线期间的神经活动 (脑电图,EEG) 和自主神经系统反应,并探索家庭自动化环境中的五个不同的技术互动区域。EEG 结果显示,当参与者探索面对 RS 的技术区域时,α 波段活动反映了普遍的神经激活。与额叶和顶枕叶区域相比,δ 波段主要存在于颞中部,并被解释为与整个用户体验相关的更高情绪激活。与 RS 相比,第六个技术互动区域(即卧室)也发现了这种影响,这应该代表着对更高多感官互动区域的情绪反应和整合处理增强。至于自主活动,与 RS 相比,卧室区域的心率 (HR) 有所增加,因此显示出对这一引人入胜的技术区域的生理指标有特定的影响。本研究是首次尝试从神经科学的角度了解用户对 SHS 的认知和情感参与反应。将根据神经生理学结果描述从这种方法中获得的一些高价值益处。
诸如 Twitter 之类的微博平台越来越多地用于事件检测。现有方法主要使用机器学习模型并依靠与事件相关的关键字来收集模型训练的数据。这些方法对包含关键字的相关微博的分布做出了强有力的假设(称为分布的期望),并将其用作模型训练期间的后验正则化参数。然而,这些方法受到限制,因为它们无法可靠地估计关键字的信息量及其对模型训练的期望。本文介绍了一种人机循环方法,在估计其期望的同时共同发现用于模型训练的信息丰富的关键字。我们的方法迭代地利用人群来估计特定于关键字的期望以及人群与模型之间的分歧,以发现对模型训练最有益的新关键字。这些关键词及其期望不仅提高了最终的性能,而且使模型训练过程更加透明。我们在多个真实数据集上通过经验证明了我们的方法在准确性和可解释性方面的优点,并表明我们的方法将现有技术提高了 24.3%。
由来自学术界和工业界的欧洲、俄罗斯和加拿大合作伙伴拥有。该框架包括多个学科,例如空气动力学、结构、推进、飞行力学、任务模拟、成本和排放。AGILE 项目的新颖之处之一是将初步机载系统设计学科整合到 MDO 框架中。机载系统学科确实深受其他设计学科的影响。反过来,机载系统学科影响着整体飞机设计 (OAD) 的主要结果。在这方面,值得注意的是,机载系统质量占飞机最大起飞质量 (MTOM) 的约 30% ([11], [12])。对飞机层面产生重大影响的是二次动力,即从发动机获取的用于供应机载系统的电力、液压和气动动力。一般而言,产生二次动力消耗所燃烧的燃料占总任务燃料的 5%。此外,机载系统设计学科会影响空气动力学(例如由于襟翼整流罩)、飞机几何形状、飞行品质、可靠性、可用性、可维护性和安全性 (RAMS) 考虑因素、成本。因此,从设计过程的最初阶段开始,在 OAD 环境中执行更详细的机载系统设计非常重要 [13]。为此,文献中提出了几个 MDO 框架来解决
无人战斗机 (UCAV) 研究使这些技术的远程操作技术在现代取得了显著进步,尽管主要侧重于地面打击场景。在空对空作战中,关键决策的毫秒级时间限制阻碍了无人战斗机的远程操作。除此之外,考虑到人类平均视觉反应时间为 0.15 到 0.30 秒,而思考最佳计划并与友军协调的时间则更长,人工智能 (AI) 可以利用巨大的改进空间。虽然许多支持提高自主能力的人预示着设计能够执行极高 g 机动的飞机的能力以及降低飞行员风险的好处,但本白皮书将主要关注实时决策能力的提高。
迅速到达目的地。为此目的使用飞机的公司和个人,即空域用户,希望根据动态优化的业务轨迹来操作飞机,以完成其特定任务和运营业务模式。在当前的运营中,出于安全和空中导航服务提供商的运营需求的原因,业务轨迹的动态优化受到国家空域系统 (NAS) 运营中内置约束的限制。NASA 一直在开发和测试克服这些限制的方法,并允许在飞行前和飞行过程中随着条件的变化,更接近空域用户不断变化的业务轨迹进行运营。提出了一个提高用户自主性的合理步骤路线图,首先是 NASA 的交通感知战略机组请求 (TASAR) 概念,该概念使机组人员能够向空中交通管制提出明智、无冲突的飞行优化请求。这些步骤包括使用数据通信来处理路线变更请求和批准、与联邦航空管理局 (FAA) 正在开发的基于时间的到达流量管理流程集成、增加用户定义和修改轨迹下游战略部分的权限,以及最终应用自我分离。这一进展利用了现有的 FAA NextGen 计划和 RTCA 标准开发,旨在减少
也被雷达和立体多功能摄像系统识别,因此 TaxiBot 车队在接触障碍物之前达到了完全停止状态。SMPC 系统检测到后,车队与障碍物的距离约为 X = 179 米。由于传感器的特性,雷达探测到后与物体的剩余距离在 X = 19.5 米和 30.3 米之间。这代表着至少约 1.5 秒的额外反应时间。这个较大的范围是由于雷达图像的更新率相对较差。在滑行道被污染的情况下,摩擦系数会降低到 0.3。即使在这些条件下,物体和车队之间的剩余最小距离为 X = 3.5 米。
• 从 2017-18 学年开始,图形计算器将通过学校图书馆每年向所有学生提供借用。 • 计算器将在开学前两周内发放。 • 需要签署许可表才能完成借用流程。(见下页) • 数学老师将在开学第一天分发许可表。
表 4 显示,通过扩大孔径来恢复通风质量流量不足以确保相同的冷却性能。实际上,FPR 的降低会导致通风喷射速度降低,从而导致传热系数值降低。确保大致相同的冷却效果的唯一方法是借助动态铲斗恢复一些动态压力。但这种突出到风扇流中的装置是不可接受的,因为它会对发动机比油耗 (SFC) 产生太大的影响。有必要重新设计进气口形状以优化其性能,同时考虑到诸如尽量减少其对声学表面的影响和应力影响等约束。目前,优化的斜简单孔(与表 3 中所示的进气口形状相比更平滑的进气口形状)被视为一种可接受的折衷方案。