虽然子宫内膜异位症研究受到慢性资金不足的困扰,但这是进步的唯一限制吗?鉴于我们当前的知识,我们是否应该完全重新考虑研究方向?在这场辩论中,一些世界领先的研究人员将领导讨论这些问题。我们是否继续建立在子宫内膜异位研究的关键领域已经取得的进步,还是放弃这些途径并尝试一种全新的新方法。谁会随着子宫内膜异位症世界的这些巨人的胜利解决这个基本问题。
模型组预测可变最大最大SDR²CV相对RMSECV RMSECV RPDCV模型质量牛奶C4(g/dl)0.01 0.23 0.10 0.10 0.03 0.03 0.93 8%3.67 3牛奶C6(g/dl)0.01 0.01 0.01 0.16 0.16 0.07 0.02 0.02 0.02 0.02 0.91 9%3.32 3牛奶C8牛奶C8牛奶C8牛奶C8(G/DL)0.011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 2011得益3牛奶C10(g/dl)0.02 0.32 0.11 0.04 0.91 9%3.37 3牛奶C12(g/dl)0.02 0.41 0.13 0.13 0.04 0.92 9%3.62 3牛奶C14(g/dl)0.05 1.05 1.20 1.20 1.20 1.20 0.45 0.45 0.13 0.13 0.13 0.15 0%0.0%0.0%0.6牛奶C14_1(dl)0.00 004 dl) 21% 1.78 5 Milk C16 (g/dL) 0.12 3.32 1.20 0.40 0.94 8% 4.18 3 Milk C16_1c (g/dL) 0.01 0.24 0.07 0.03 0.73 20% 1.91 5 Milk C17 (g/dL) 0.00 0.09 0.03 0.01 0.80 13% 2.24 4 Milk C18 (g/dL) 0.05 1.32 0.40 0.15 0.84 14% 2.51 4 Milk C18_1cis9 (g/dL) 0.08 2.69 0.76 0.29 0.95 8% 4.35 2 Milk C18_2c9c12 (g/dL) 0.00 0.17 0.06 0.02 0.72 19% 1.91 5 Milk C18_2c9t11 (g/dL) 0.00 0.14 0.03 0.02 0.74 37% 1.95 6 Milk C18_3c9c12c15 (g/dL) 0.00 0.09 0.02 0.01 0.68 22% 1.77 5 Milk Tot18_1cis (g/dL) 0.09 2.77 0.82 0.31 0.95 8% 4.58 2 Milk Tot18_2 (g/dL) 0.01 0.32 0.10 0.03 0.69 15% 1.79 5 Milk Total_C18_1 (g/dL) 0.10 2.98 0.94 0.33 0.96 7% 5.18 2 Tot18_1trans (g/dL) 0.01 0.57 0.13 0.06 0.79 21% 2.17 4 Milk Total_Trans (g/dL) 0.02 0.75 0.16 0.08 0.80 19% 2.26 4 Milk isoanteiso FA (g/dL) 0.02 0.28 0.09 0.03 0.75 14% 2.00 5 Milk Odd fatty acids (g/dL) 0.03 0.50 0.16 0.04 0.83 10% 2.41 4 Milk omega3 (g/dL) 0.00 0.11 0.03 0.01 0.66 22% 1.73 5 Milk omega6 (g/dL) 0.01 0.33 0.10 0.03 0.72 14% 1.89 5 Milk SAT FA(g/dl)0.31 6.97 2.70 0.75 0.99 3%10.22 1牛奶unsat(g/dl)0.14 3.86 3.86 1.25 0.39 0.97 5%5.75 2牛奶单fa(g/dl)(g/dl)0.12 0.12 3.42 3.42 3.42 1.08 0.35 0.35 0.35 0.30 0.77 77 13.77 13.02牛奶pufa(g/dl)dl) 2.10 4牛奶SCFA(g/dl)0.05 0.80 0.35 0.10 0.93 7%3.88 3牛奶LCFA(g/dl)0.19 4.79 4.79 1.59 0.52 0.52 0.95 7%4.52 2牛奶MCFA(G/DL)
宽带中红外(IR)超脑激光源对于分子指纹区域的光谱学至关重要。在这里,我们报告了AS 2 S 3-Silica Nansospike Hybrid Waveguides的产生,并在2 s-Silica Nansospike Hybrid波动中产生,由定制的2.8μm飞秒纤维激光器泵送。波导是由压力辅助熔融AS 2 s 3的压力融化到二氧化硅毛细管中形成的,从而可以精确地定制分散体和非线性。连续的相干光谱从1.1μm到4.8μm(30 dB水平)时,在设计波导时会观察到2.8μm在异常的分散体状态中。首次制造和研究了线性锥形的毫米尺度为2 s-3-silica波导,据我们所知,与均匀的波导相比,具有重新的规格相干性,表现出比均匀的波导更宽。由于熔融二氧化硅鞘屏蔽了AS 2 S 3,因此波导被证明是长期的稳定和防水。他们提供了产生宽带MID-IR超孔的替代途径,并在频率计量学和分子光谱中应用,尤其是在潮湿和水性环境中。©2021中国激光出版社
研究了两种气体(CO 2)和甲烷(CH 4)的两种气体中的中红外区域的检测,研究了不同的集成光子传感器。这三个研究的结构是基于Chalcogenide膜(CHG)或多孔也(PGE)和基于CHG的Slot波导的山脊波导。优化了波导尺寸,以在导向光和气体之间获得最高功率因数,同时保持在中红外波长范围内的单个模式传播。在CHG山脊波导的情况下,可实现的功率因数为1%,PGE-Ridge为45%,在CHG-Slot的情况下为58%。在λ=4.3μm处的二氧化碳的检测极低(LOD),甲烷在λ=7.7μm下的二氧化碳为0.1 ppm,由于中液范围内的较大的气体吸收系数,可获得CHG SLOT波引导的λ=7.7μm。对于多孔驻驻波导,还计算出低LOD值:CO 2在λ=4.3μm时为0.12 ppm,CH 4在λ=7.7μm处的Ch 4 ppm。这些结果表明,所提出的结构可以在环境和健康感测芯片上实现通用光谱检测所需的竞争性能。
项目详细信息:动机:中红外(miR)光谱是一种强大的工具,可通过其独特的振动吸收特征(波长〜2-14 µm)来识别生化物质 - 在革命性技术中扮演至关重要的作用,使生物医学诊断,远程诊断和环境监视。不幸的是,miR光谱传感/成像被认为是繁琐的,昂贵的,通常是在实验室中固定的。对缩小传统光谱系统的技术挑战仍然存在 - 从光源,传感机制(由于相互作用弱)到检测子系统。metasurfaces为下一代多功能miR传感技术提供了令人兴奋的途径。元面是3D超材料的2D等效物:人工设计的材料,其特性在自然界中不可能找到。光子跨国使用子波结构(元原子)阵列内的纳米级光 - 含量相互作用来操纵电磁波。但是,光子学中的常规前向设计过程导致最终的设备功能和性能不足,没有明显的方法进行。AI驱动的逆设计方法提供了光子结构设计的新范式,以克服传统方法。项目:这个跨学科的博士学位项目将使用逆设计方法开发多功能光子跨度,用于非常规MIR光谱传感和高光谱成像技术。该博士学位的目标是开发了下一代mir技术的家族。C. Williams博士(PI),位于CMRI中,我们将调查(1)热发射微型源,这些微型源操纵热发射,超出了经典的各向同性,宽带和非偏振黑体发射; (2)增强与靶分子相关的分子振动吸收模式(包括葡萄糖,与工业伴侣结合); (3)用于超敏感传感的光驱动光热传感器。技能开发:研究跨越基本的光学物理学到应用程序,学生将在博士项目期间开发多样化且备受追捧的技能,包括:使用AI /机器学习方法,电磁模拟的计算光学器件(包括Lumerical FDTD和comsol),最先进的洁净室内的纳米制作(包括电子束光刻,物理蒸气沉积和两光子聚合3D打印),电形系统表征,感应性能的验证和高级数据分析。埃克塞特大学:埃克塞特物理学系在光学物理,光子设备开发和超材料方面具有广泛的专业知识。学生将拥有世界一流的研究设施,并基于超材料研究与创新中心(CMRI):一个学术,工业和政府合作伙伴的社区,可利用从理论到应用的世界领先的研究卓越研究,并启用模拟,测量和基于基于Metamagatials和Metamagematialial的设备。
我是乌得勒支大学弗洛伊达尔研究所的副教授。我的研究专注于生命科学的历史和哲学。我的研究的主要目的是停止科学和社会中的种族主义。为此,我研究了科学史以及当代生物医学研究(例如,在微生物组研究和表观遗传学)和生物识别技术(例如面部识别)中的种族化实践。我还调查了拉丁美洲的跨学科知识生产和民族生物学历史的政治。我是由荷兰研究委员会(NWO)资助的“微生物组研究与种族”项目的主要研究者(2024-2029)。
基于GE的集成光子回路过去10年中,基于锗(Ge)的光电元件得到了发展,拓展了硅(Si)光子回路的潜力。光电探测器、调制器和Ge-on-Si激光器已经在中红外区得到演示。Ge的主要优势在于它的透明窗口大,波长范围从1.8至14μm,并且与CMOS兼容。Ge和SiGe合金很快被视为开发集成光子元件的首选材料。厚Ge和SiGe层(高达40%的Ge)通常在工业外延集群工具中通过化学气相沉积在200mm和300mm Si(001)晶片上生长。关于Ge和SiGe生长的更多细节可以在参考文献[1]中找到。 SiGe 或绝缘体上的 Ge(如 SiN)晶片可从之前的外延中制造出来。在这种情况下,需要将两个晶片键合在一起:第一个晶片具有 Ge 或 SiGe 外延层,上面覆盖有 SiNx 层和薄 SiO 2 层,第二个晶片是氧化 Si 晶片。在 SiO 2 到 SiO 2 键合之后,起始
摘要中红外的光学频率梳是一种强大的气体传感工具。在这项研究中,我们证明了一个简单的中红外双弯曲光谱仪,在Linbo 3波导中覆盖3–4 µm。基于低功率激光器系统,通过linbo 3波导中的脉冲差差频率产生来实现中红外梳子。我们在超脑生成之前构建疗法前的管理,以控制泵和信号脉冲的时空比对。对于3-4 µm idler的产生,超副局部直接耦合到the的定期螺旋的Linbo 3波导中。基于这种方法的中红外双弯曲光谱仪在25 THz覆盖范围内提供了100 MHz的分辨率。为了评估光谱法的适用性,我们使用双梳光谱仪测量甲烷光谱。测量结果与Hitran数据库一致,其中残留的根平方为3.2%。这种提出的方法有望在芯片上开发综合且坚固的中红外双弯曲光谱仪进行感测。
超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。
©2022 Taylor&Francis Group,LLC。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线在http://doi.org/10.1080/05704928.2022.2156527获得。