摘要背景:中西药联用增加了所摄入化合物的复杂性。目的:利用人工智能方法开发一种基于化学结构的中西药肝毒性化合物筛选方法。方法:从公开数据库和发表的文献中收集药物性肝损伤(DILI)数据。将DILI数据形成的整个数据集以大约3:1的比例随机分为训练集和测试集。采用SGD(随机梯度下降)、kNN(k最近邻)、SVM(支持向量机)、NB(朴素贝叶斯)、DT(决策树)、RF(随机森林)、ANN(人工神经网络)、AdaBoost、LR(逻辑回归)和一种深度学习模型(深度信念网络,DBN)构建肝毒性化合物筛选模型。结果:本研究共收集了2035个肝毒性化合物数据集,其中1505个化合物作为训练集,530个化合物作为测试集。结果表明,RF在训练集上的分类准确率(CA)为0.838,F1-score为0.827,Precision为0.832,Recall为0.838,曲线下面积(AUC)为0.814;在测试集上的分类准确率(CA)为0.767,F1为0.731,Precision为0.739,Recall为0.767,AUC为0.739,优于其他8种机器学习方法。DBN在测试集上的分类准确率为82.2%,高于其他任何机器学习模型。