摘要 - 视网膜假体可以改善受感光者退行性疾病盲目的患者的视力。尽管人为视力受益,但这些假体的空间分辨率低限制了临床上可用设备的积极影响。视觉植入物中单电极产生的视觉感知可以重叠并导致不清楚的图像,这限制了视网膜假体使用者的形状和字母感知。然而,研究表明,在靶神经元近距离近端植入的较小的电极可能可以使用较小的分辨率。在这项研究中,我们使用穿透性亚细胞纤维微电极在离体小鼠视网膜中进行了视网膜刺激,并进行了钙成像以记录视网膜神经节细胞(RGC)的空间激活,以响应不同的刺激振幅和RGC-电极距离。我们观察到较小的RGC空间活性和较高的RGC - 电极距离较小的脱靶刺激,这可能是通过双极细胞间接RGC激活的指示。碳纤维电极的阻抗测量在整个插入和刺激过程中证明了它们的机械和电稳定性。我们的结果表明,脉冲振幅和电极深度的修饰会在活动电极周围产生小而焦点的响应。用碳纤维进行的视网膜刺激可能会增加临床应用中视网膜假体的刺激精度和图像分辨率。
我们是否充分利用多模式大语模型(MLLM)中视觉编码器的潜力?MLLM最近在多模式理解中的出色表现引起了学术界和行业的广泛关注。在当前的MLLM大鼠种族中,重点似乎主要是语言方面。我们目睹了较大和更高质量的指导数据集的兴起,以及大型LLM的参与。然而,很少关注的注意力指向MLLM使用的视觉信号,通常被认为是冷冻视觉编码器提取的最终高级特征。在本文中,我们介绍了密集的连接器 - 一种简单,有效且插件的视觉语言连接器,通过利用多层视觉特征来显着增强现有MLLM,并以最少的额外计算开销。在此基础上,我们还提出了有效的密集连接器,该连接器的性能与Llava-V1.5相当,只有25%的视觉令牌。此外,我们的模型仅在图像上进行了训练,还展示了视频理解中出色的零拍功能。各种视觉编码器,图像分辨率,训练数据集量表,不同尺寸的LLM(2.7b→70b)以及MLLM的不同架构(e。g。,llava-v1.5,llava-next和mini-gemini)验证了我们方法的多功能性和可扩展性,从而在19个图像和视频基准中实现了最先进的性能。我们希望这项工作将提供宝贵的经验,并成为未来MLLM开发的基本模块。代码可在https://github.com/hjyao00/denseconnector上找到。
摘要 我们之前已表明,2 周的严格食物限制 (sFR) 饮食(对照 (CT) 饮食的 40% 热量摄入)上调了雌性 Fischer 大鼠的循环肾素血管紧张素 (Ang) 系统 (RAS),这很可能是由于血浆容量下降所致。在本研究中,我们调查了中枢 RAS 在与 sFR 相关的平均动脉压 (MAP) 和心率 (HR) 失调中的作用。虽然 sFR 降低了基础平均 MAP 和 HR,但对脑室 (icv) 微量注射 Ang-[1-8] 的升压反应幅度不受影响;然而,在 sFR 大鼠中微量注射 Ang-[1-8] 26 分钟后 HR 降低了 57 ± 13 bpm,微量注射氯沙坦后也观察到了类似的反应。下丘脑中 Ang-[1-8] 的主要分解代谢途径是通过 Ang-[1-7];然而,CT 动物和 sFR 动物之间 Ang-[1-8] 合成或降解的速率没有差异。虽然 sFR 对穹窿下器 (SFO)、终板血管器 (OVLT) 和第三脑室旁前腹侧正中视前核 (MnPO) 中的 AT 1 R 结合没有影响,但下丘脑旁核 (PVN) 中的配体结合增加了 1.4 倍。这些发现表明,sFR 通过增加 PVN 中的 AT 1 R 表达来刺激中枢 RAS,作为对基础 MAP 和 HR 降低的补偿反应。这些发现对于经历 sFR 时期的人们具有重要意义,因为激活的中枢 RAS 可能会增加他们患上涉及 RAS 过度激活的疾病(包括肾脏和心血管疾病)的风险。
摘要 在发育过程中,视网膜祖细胞在复杂的命运决定环境中前行,以产生正常视觉所必需的主要细胞类别。转录调控对于在这些主要细胞类别中产生多样性至关重要。在这里,我们旨在提供所需的资源和技术,以识别产生和维持光感受器亚型多样性所必需的转录因子,这对视觉至关重要。首先,我们生成一个关键资源:成年斑马鱼中每种光感受器亚型的高质量深度转录组谱。我们使此资源公开可访问、易于探索,并将其与其他当前可用的光感受器转录组数据集集成在一起。其次,利用我们的转录组谱,我们得出了光感受器中转录因子表达的深度图谱。第三,我们使用高效的基于 CRISPR-Cas9 的诱变技术筛选 F0 幼虫中的无效表型(F0 筛选),这是一种快速、高效且通用的技术,用于评估候选转录因子在光感受器亚型生成中的参与程度。我们首先表明,使用此方法可以轻松复制已知表型:foxq2 突变体中 S 锥体的丢失和 nr2e3 突变体中视杆体的丢失。然后,我们确定了转录因子 Tbx2 的新功能,表明它在控制视网膜内所有光感受器亚型的生成方面发挥着不同的作用。我们的研究提供了发现参与此过程的其他因子的路线图。此外,我们探索了四种功能未知的转录因子(Skor1a、Sall1a、Lrrfip1a 和 Xbp1),没有发现它们参与光感受器亚型生成的证据。该数据集和筛选方法将成为探索涉及光感受器生物学许多其他重要方面的基因的有效方法。
眼底视网膜成像和荧光血管造影数据,利用视网膜图像中视网膜血管树的存在。6 Mahapatra 等人应用生成对抗网络在注册文件的监督下注册多模态图像,这些注册文件由其他传统方法获得。7 然而,在这两项研究中,叠加方法仅限于用相同相机和相同视野拍摄的视网膜图像,只是波长不同(用标准相机拍摄的荧光血管造影和彩色眼底图像)。此外,人工智能已用于分析单模态图像分析以对疾病进行分类或检测,10-12 但目前还没有方法可以共定位和分析多个成像和功能数据。因此,作为应用人工智能分析多仪器成像和功能研究的初步步骤,我们尝试将来自扫描激光平台的图像叠加到眼底照相机平台上。这些成像平台利用不同的光学路径和不同类型的照明(扫描激光与泛光照明)。我们选择使用红外扫描激光检眼镜 (IR SLO) 图像作为原型 SLO 图像来叠加到彩色眼底 (CF) 上。照片是用眼底照相机拍摄的,因为所有接受光学相干断层扫描 (OCT) 扫描的患者都会进行此类成像,而且红外图像的光学和纵横比预计与用 SLO 拍摄的自发荧光 (AF) 或多色 (MC) 图像相似并因此适用于这些图像,所以这些结果可能适用于许多类型的图像。我们注意到 SLO 图像是使用与 CF 图像不同的光学和仪器拍摄的,因此这似乎是确定 AI 代理是否可以通过检查血管位置来完成这种叠加的良好开端。这项研究的创新之处在于,我们对一种新型 AI 算法在多模态视网膜图像配准方面的表现进行了严格的、隐蔽的研究。我们的算法能够执行图像配准,而无需大量手动注释的真实图像集。
本研究的目的是确定在诊断为糖尿病时年龄为 15-34 岁的年轻成人中可能导致糖尿病视网膜病变发展的三种粘附分子的血浆水平;可溶性内皮选择素 (sE-selectin)、可溶性细胞间粘附分子-1 (sICAM-1) 和可溶性血管细胞粘附分子-1 (sVCAM-1),以寻找视网膜病变发展的潜在预测因素,并评估它们与糖尿病相关自身抗体的关系。从瑞典糖尿病发病率研究的并发症试验中选出患有 1 型 (n = 169) 和 2 型糖尿病 (n = 83) 的参与者,并根据糖尿病诊断后 8-10 年的随访中视网膜照相确定的视网膜病变的存在 (n = 80) 或不存在 (n = 172) 分为两个亚组。血液样本是在 1987-88 年诊断时采集的。通过酶联免疫吸附试验分析了 sE-选择素、sICAM-1 和 sVCAM-1 水平,通过延长双色免疫荧光试验分析了胰岛细胞抗体水平。平均 HbA1c(p < 0.001)和临床特征:平均体重指数(p = 0.019)、收缩压(p = 0.002)、舒张压(p = 0.003)、男性(p = 0.026)和诊断糖尿病时年龄较小(p = 0.015)与 1 型糖尿病患者视网膜病变的发展仍然有关。然而,在多变量分析中,只有 HbA1c 仍然是一个风险因素。与无视网膜病变的 2 型糖尿病组相比,2 型糖尿病和视网膜病变组的 sE-选择素明显较高(p = 0.04)。至于 1 型糖尿病患者的 sE-selectin、sICAM-1 和 sVCAM-1,在有或无视网膜病变的组之间没有观察到差异。这项试验证实了 HbA1c 和临床特征作为 1 型糖尿病视网膜病变发展的预测因子的作用。sE-selectin 是 2 型糖尿病视网膜病变发展的潜在预测因子,而 sICAM-1 和 sVCAM-1 的预测作用无论是对于 1 型还是 2 型糖尿病都无法确定。
抽象引言患有2型糖尿病的年轻人(YOD),定义为40岁之前的糖尿病诊断,具有血管并发症的终身风险很高。我们旨在估计挪威一般实践中2型糖尿病(T2D)成年人中YOD的流行,并探索糖尿病诊断与整体糖尿病诊断年龄之间的关联。研究设计和方法,我们从2014年的10241名成年人的通用电子医疗记录中收集了横截面数据,并重复测量了2012年至2014年的血红蛋白A 1C(HBA 1C)。使用多元逻辑回归,我们评估了YOD与后来发作的T2D,性别和视网膜病之间的关联。所有T2D患者的结果,在两个男女40岁之前被诊断出10%。与后期发作的T2D相比,YOD的HBA 1C速度更快,在诊断时,HBA 1C的HBA 1C在男性中,尤其是在YOD中。视网膜病在25%的YOD中发现,频率是后来的两倍。 在对混杂因素(年龄,原产国,教育,体重指数)或视网膜病变的调整后,YOD的男性(OR 2.6(95%CI 2.0至3.5))和YOD的妇女(OR 2.2(1.5至3.0))增加了。 在对潜在介体(糖尿病持续时间和HBA 1C)进行进一步调整之后,YOD的男性(或1.8(1.3至2.4))较高或持久,但对YOD女性不再具有重要意义。 结论视网膜病变的患病率是YOD的两倍以上,是以后发作的T2D。视网膜病在25%的YOD中发现,频率是后来的两倍。在对混杂因素(年龄,原产国,教育,体重指数)或视网膜病变的调整后,YOD的男性(OR 2.6(95%CI 2.0至3.5))和YOD的妇女(OR 2.2(1.5至3.0))增加了。在对潜在介体(糖尿病持续时间和HBA 1C)进行进一步调整之后,YOD的男性(或1.8(1.3至2.4))较高或持久,但对YOD女性不再具有重要意义。结论视网膜病变的患病率是YOD的两倍以上,是以后发作的T2D。YOD中视网膜病变的可能性增加是由HBA 1C较高和T2D持续时间较长的部分介导的,但是在考虑到这些因素的情况下,YOD的男性仍然更高。
背景:脑视觉障碍(CVI)是早期脑损伤,损害或畸形的常见序列,是全球儿科种群中视觉功能障碍的主要原因之一。尽管CVI患者在潜在的病因和视觉行为表现方面都是异质的,但在可能会改变白质途径方面,可能存在基本相似之处。这项探索性研究使用扩散散曲学来检查体积,数量各向异性(QA)的潜在差异,以及平均,轴向和径向扩散率(平均扩散率(MD),轴向扩散率(AD)和径向扩散(RD),分别与典型的典型序列相比,轴向扩散率(AD)和径向扩散(RD)与年轻人的途径相比视力和发展控制。方法:在10个患者的样本中获取了高角度分辨率扩散成像(HARDI)数据,该样本具有CVI诊断(平均年龄= 17.3岁,2.97年龄,标准偏差(SD),范围14-22岁)和17个对照(平均年龄= 19.82岁,19.82岁,3.34 SD,SD,15-25岁范围)。下纵向筋膜(ILF),下额枕骨(IFOF),垂直胸膜筋膜(VOF)以及上纵向筋膜上的三个划分(SLF I,II和III)实际上是对内部和平均体积进行了调整的,并且是对内部和平均体积的比较(与静脉内的体积相结合)。组。作为次要分析,进行方差分析(ANOVA)以研究基于病因的潜在差异(即,由于周围的脑室白细胞(CVI-PVL)和CVI引起的其他原因(CVI-PVL),其他原因(CVI-NONPVL)引起的CVI)。结果:我们观察到CVI组内的差异很大,这在检查CVI样品作为单一组时,将整体组差异最小化。在我们的次级分析中,我们观察到与对照组和由于其他原因引起的CVI的个体相比,CVI-PVL组的道量显着减少。与对照组相比,CVI-PVL中的质量质量,MD和AD的显着增加,在CVI-NONPVL组中具有混合作用。结论:这些数据提供了与视觉感知处理技能有关的关键白质fasciculi的异常发展的初步证据,CVI患者通常会受到不同程度的损害。结果还表明,白质变化的严重程度和程度可能部分是由于脑视觉障碍的根本原因。需要在更大的样本中与行为测试一起进行其他分析,以充分理解CVI患者中白质完整性,视觉功能障碍和相关原因之间的关系。
在人类和其他灵长类动物中,由于BDNF基因在巨核细胞中的表达,血小板含有高浓度的脑源性神经营养因子。相比之下,通常用于研究中枢神经系统病变的影响的小鼠在血小板中没有明显水平的脑衍生的神经营养因子,并且它们的巨核细胞没有大量的bdnf基因。在这里,我们使用两种良好的CNS病变模型探索了血小板脑源性神经营养因子的潜在贡献,并使用“人源化”小鼠在巨核细胞特异性启动子的控制下使用“人性化”小鼠进行表达BDNF基因。使用二元术和通过sholl分析后评估的视网膜神经节细胞的树突状细胞的树状完整性标记了由含有脑源性神经营养因子的小鼠制备的视网膜外植体。将结果与野生型动物的视网膜以及补充饱和浓度的脑源性神经营养因子或tropomyosin激酶B抗体激动剂ZEB85的野生型外植体进行了比较。还进行了视神经张力,视网膜神经节细胞的树突在伤害后7天评估,将血小板中含有脑源性神经营养因子的小鼠与野生型动物进行了比较。在含有脑源性神经营养因子的小鼠中,纯合子的平均血清脑源性神经营养因子水平为25.74±11.36 ng/ml,17.02±6.44 ng/ml的杂氮小鼠,近乎杂合小鼠,接近原始的小鼠。基于细胞计数的视网膜神经节细胞存活在所有四组中均相似,显示约15%的损失。表现出强大的树突复杂性保存,类似于与补充脑衍生的神经营养因子或真霉素受体激酶B抗体抗体抗体激动剂的培养基孵育的野生型外植体,Zeb85。曲线下的sholl区域为1811±258、1776±435和1763±256,而野生型对照组中的Sholl区域为1406±315(p≤0.001)。在评估反式基因小鼠中视网膜神经节细胞的树突时,还观察到了一种强大的神经保护作用,与野生型相比,弯曲曲线下的视网膜神经节细胞的树突明显更高(2667±690和1921±392,p = 0.026),并且在无显着差异中,并且是无显着差异的。重复实验发现细胞存活没有差异,两者均显示约50%的损失。这些结果表明,血小板脑衍生的神经营养因子对视网膜神经节细胞的树突复杂性具有强大的神经保护作用,在体内和体内模型中,这表明血小板脑源性的神经营养因子可能是灵长类动物的重要神经保护因子。