摘要 — 最近的实验证明了在 DNA 和蛋白质等大分子中存储数字信息的可行性。然而,DNA 存储通道容易出现删除、插入和替换等错误。在 DNA 字符串的合成和读取阶段,会生成许多原始字符串的噪声副本。从这些噪声副本中恢复原始字符串的问题称为序列重建。该问题中的一个关键概念是错误球,它是所有可能序列的集合,这些序列可能由对原始序列应用有限数量的错误而产生。Levenshtein 表明,给定通道恢复原始序列所需的最小噪声副本数等于两个错误球交集的最大大小加一。因此,推导任何通道和任何序列的错误球大小对于解决序列重建问题至关重要。在 DNA 存储系统中,字符串中的多种错误(例如删除、插入和替换)可能同时发生。在这项工作中,我们旨在推导具有多种错误类型和最多三次编辑的通道的错误球大小。具体来说,我们考虑具有单删除双替换、单删除双插入和单插入单替换错误的通道。
摘要 — 在本文中,我们借助 MATLAB 模拟器研究了在 IBM-Q 硬件上运行的 Harrow-Hassidim-Lloyd (HHL) 量子算法中的错误传播和生成。HHL 是一种量子算法,在解决线性方程组 (SLE) 时,它可以比最快的经典算法(共轭梯度法)提供指数级加速。但是,如果没有错误校正,由于其复杂性,即使在 2 变量系统中也无法给出正确的结果。在本研究中,在 IBM-Q 中实现了 2 变量 SLE 的 HHL 量子电路,并在电路的每个阶段之后提取错误并与 MATLAB 模拟器进行比较。我们确定了三个主要的错误来源,即单量子位翻转、门不保真和错误传播。我们还发现,在辅助位旋转阶段,错误变大,但编码解决方案仍然具有高保真度。然而,在逆量子相位估计之后,解决方案大部分丢失,而逆量子相位估计是有效提取解决方案所必需的。因此建议,如果纠错资源有限,则应将其添加到电路的后半部分。
摘要:错误相关性被认为是BCI的有望作为执行错误校正或预防的一种方式,或标记数据以在线适应BCIS的控制模型。当前最新的BCIS是基于运动模拟的侵入性BCI,因此除了感觉运动皮质外,无法访问神经数据。我们在单个试验级别研究了在观察或运动成像(MI)控制BCI期间,误差的存在和可检测性与四翼型用户对BCI进行了两个离散类别。We show that error correlates can be detected using a broad range of classifiers, namely Support Vector Machine (SVM), logistic regression, N-way Partial Least Squares (NPLS), Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN) with respective mean AUC of the ROC curve of 0.645, 0.662, 0.642, 0.680 and 0.630在观察条件下,在MI-Control条件下,0.623、0.605、0.603、0.626和0.580。我们还建议这些误差相关的时间稳定。这些发现表明,使用基于侵入性运动模拟的BCI进行误差校正或预防,可以在临床试验中使用误差相关性。