导航极端:大输出空间中的动态稀疏性。Nasibullah Nasibullah,Erik Schultheis,Mike Lasby,Yani Ioannou,Rohit Babbar。研究了大型输出空间的动态稀疏训练。利用半结构化的稀疏性,中间层和辅助损失,它可以使用数百万个标签的端到端培训。
过去几十年来,轨道卫星的数量以不受限制和不受管制的方式大幅增加,威胁到未来可持续的太空探索。正在进行的建造微型卫星巨型星座的计划将不可避免地增加轨道天体的数量,从而产生越来越多的碎片。随着轨道天体数量的增加以及轨道上剩余的卫星和运载火箭的增多,再入率预计将继续增长。虽然人们普遍认为大多数物体在再入过程中会完全燃烧,但太空碎片消亡对地球大气层的影响却只得到了很少的研究,其长期影响仍不得而知。我们利用反应分子动力学模拟来解决中间层再入的关键结构材料铝的氧化过程,在此介绍第一台大型超级计算机对氧化铝纳米颗粒的生成进行运行。截至 2022 年,从低地球轨道 (LEO) 重返大气层的物体总质量总计达 309 公吨,与上一年相比增长了 18%。与天然来源相比,仅凭这一数据,大气层顶部注入的铝年质量率就已增长了 87%。结果表明,太空垃圾在中间层消亡产生的氧化铝会聚集成纳米颗粒,并需要数十年时间才能衰减至较低高度。
微转移打印 (µ TP) 是一种很有前途的技术,可用于将 III-V 材料异质集成到基于 Si 的光子平台中。为了通过增加 III-V 材料和 Si 或 SiO 2 表面之间的粘附性来提高打印产量,通常使用像苯并环丁烯这样的粘附促进剂作为中间层。在这项工作中,我们展示了在没有任何粘合剂中间层的 SiO 2 中间层上基于 InP 的试样的 µ TP,并研究了无粘合剂键合的机理。源试样是基于 InP 的试样堆栈,位于牺牲层上,该牺牲层通过使用 FeCl 3 的化学湿法蚀刻去除。对于目标,我们在 8 英寸晶圆上制造了非晶硅波导,并用高密度等离子 SiO 2 封装,并通过化学机械抛光程序进行平坦化。我们使用 O 2 等离子体激活源和目标,以增加试样和基板之间的粘附性。为了更好地理解键合机理,我们应用了几种表面表征方法。利用原子力显微镜测量了等离子体激活前后 InP 和 SiO 2 的均方根粗糙度。利用光学台阶仪估算目标晶圆上微转移印刷源试样的台阶高度。利用 InP 的拉曼峰位置映射来分析等离子体激活前后 SiO 2 上可能的应变和接触角测量值,以观察表面亲水性的变化。利用 X 射线光电子能谱分析来表征 InP 源的 P2p、In3d、O1s 以及 SiO 2 目标的 Si2p、O1s 的表面能态。我们的结果表明,无需应变补偿层,就可以通过 µ TP 直接键合 InP 试样。这样,为使用 µ TP 进行 InP 异质集成提供了一种与互补金属氧化物半导体兼容的有希望的途径。
纳米技术,Academiei str。,3/3,Chisinau,摩尔多瓦阐述了两个主要人工神经网络元素 - 非线性开关(神经元)和线性连接元件(Synapse)是基于分层杂交结构[1]。这种结构的相关性取决于技术能力的发展以及改变过渡特征的便利性。在最简单的情况下,在由三个功能层组成的最简单情况下,平面约瑟夫森结的形成是基于多层超导异质结构的形成。实际上,在超导异质结构的形成期间,约瑟夫森过渡的所需特征是规定的。超导体两层之间包围的中间层或中间层完全决定了当前运输的机理,并因此是约瑟夫森交界处的特征[2]。形成超导异质结构的最方便的方法是材料溅射的方法。在真空安装中有几个磁子的情况下,这种方法使得可以在单个真空周期中形成超导异质结构,从而完全消除了在层的界面上引入其他污染物的引入。磁铁溅射方法的特征是该过程的相对较低的能量,这实际上消除了层界面处的相互扩散,尤其是难治性材料的相互扩散,并在超导导异质结构的形成过程中提供了边界的原子清晰度。020201。这项研究得到了“纳米结构和高级材料,用于实施旋转三位型,热电学和光电”»no。
所有固定状态锂金属电池(ASSLB)由于其高能量密度和高安全性而引起了人们的兴趣。然而,由于对机制的理解不足,LI树突生长和高界面耐药性仍然具有挑战性。在这里,我们开发了两种类型的多孔菌丝中间层(Li 7 N 2 I –碳纳米管和Li 7 N 2 I – Mg),以使Li能够在Li/Interlayer界面处的LI板,并可逆地渗透到多孔的层中。实验和仿真结果表明,岩石性,电子和离子电导率以及层间的孔隙率的平衡是以高容量稳定的LI板板/剥离的关键促进器。一个微调的LI 7 N 2 I –碳纳米管中间层使LI/LNI/LI对称细胞在25°C时在4.0 mAh cm -2下实现4.0 mA cm -2的高临界电流密度; the Li 7 N 2 I–Mg interlayer enables a Li 4 SiO 4 @LiNi 0.8 Mn 0.1 Co 0.1 O 2 /Li 6 PS 5 Cl/20 µm-Li full cell to achieve an areal capacity of 2.2 mAh cm −2 , maintaining 82.4% capacity retention after 350 cycles at 60 °C at a rate of 0.5 C. The interlayer design principle opens opportunities to develop safe and high energy ASSLBs.
太空领域的研究和使用,包括最近对月球及更远太空的载人航天探索的复兴,推动了对航天器热防护系统 (TPS) 的更高性能材料的搜索。陶瓷和高性能碳都表现出适合 TPS 应用的材料特性,但可以使用增材制造 (AM) 方法最大限度地提高其性能。振动辅助打印 (VAP) 是一种新开发的 AM 工艺,可以使用高粘度的陶瓷形成聚合物与固体陶瓷颗粒的混合物来制造零件。这项工作探索了利用 VAP 的陶瓷夹层 TPS 的 AM。TPS 外层由碳化硅 (SiC) 组成,具有高抗氧化性、高熔点和低热导率。薄的中间层由碳基材料组成,可提供高平面热导率以重新分配热量。数值模拟表明,这种配置可有效降低模拟再入条件下的最高温度。由聚碳硅烷聚合物和纯 SiC 粉末制备出高粘度混合物,可使用 VAP 进行 3D 打印,并使用碳负载或碳纤维负载细丝通过标准热塑性挤出打印用于组装的中间层。SiC 组件固化温度高达 248.8°C,热解温度高达 1,600°C,并通过 SEM、EDS 和 XRD 进行表征并测试抗压强度。
3.1 基于收购的 T&E ...................................................................................................................... 11 3.1.1 有关重大能力收购的 T&E 挑战和机遇 ........................................................................ 12 3.2 加速收购途径 ...................................................................................................................... 15 3.2.1 紧急能力收购途径 ...................................................................................................... 15 3.2.2 收购途径的中间层 ...................................................................................................... 16 3.2.3 软件收购途径 ............................................................................................................. 17 3.3 新兴技术 ............................................................................................................................. 19 3.3.1 高超音速系统 T&E 的挑战 ............................................................................................. 19 3.3.2 定向能系统 T&E 的挑战 ............................................................................................. 21 3.3.3 使用 AI/ML 的系统的 T&E 挑战 ................................................................................ 24 3.4 以任务为中心的差旅与费用评估 ...................................................................................................... 29
摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平佛劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 范围内的湍流均方根 (rms) 速度。研究发现,湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型得出的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析结果吻合良好。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度动力学在统计平均值上受 SMT、ST 和 KT 控制。
O li M d 10th J 2025 12 30 16 30 背景:高温材料通常用于发电厂和航空发动机的恶劣环境中。在这种苛刻的工业环境中,通常使用基于钛合金、镍基高温合金和钢的高温合金。此外,热障涂层(如铂铝化物)和中间层对于保护镍基高温合金在使用过程中免于快速劣化非常重要。材料加工、性能、微观结构和测试对于成功使用这些材料至关重要。本课程旨在介绍这些先进材料及其加工、性能和测试,用于能够抗蠕变、氧化和热疲劳的高温。本课程涉及以上所有方面。
