摘要:如今,为了克服可再生能源整合带来的新挑战,成本更低、体积更小、效率更高的电源转换器正在不断发展。在此背景下,可再生能源应用中对精心设计的电源转换器的需求日益增加,以减少能源利用率并处理各种负载。本文提出了一种用于 DC-DC 转换的中心抽头桥级联串联谐振 LC 双有源桥 (DAB) 转换器。所提出的转换器的零件数量少,可以实现高功率密度设计,同时降低成本。由于采用电流阻断特性消除了反向电流,因此所提出的转换器降低了传导损耗。反向电流阻断还可以在很宽的工作范围内实现零电压开关 (ZVS) 和零电流开关 (ZCS)。因此,与传统的 DAB 转换器相比,使用简单的固定频率调制 (FFM) 方案可提供更宽的工作范围。基于传导损耗和开关损耗对所提出的转换器和传统的 DAB 转换器进行了全面比较,以说明性能改进。最后,通过仿真和实验结果验证了所提出的转换器的有效性。
本文介绍了一种用于串联超级电容器串和电池串的新型单串联谐振槽和电容器转换器电压平衡电路。它识别了在串联超级电容器系统或电池系统中恢复最大能量和电池间零电压差的平衡电路。该平衡电路不仅继承了基于传统单串联谐振转换器的平衡系统的改进,而且还恢复了开关损耗、传导损耗和电池串间电压差的缺点。所有 MOSFET 开关均由一对互补 PWM 信号控制。此外,谐振槽和并联电容器在充电和放电两种模式之间工作。该电压平衡电路已显示出在电池管理系统中应用的良好效果。
摘要:如今,为了克服可再生能源整合带来的新挑战,成本更低、体积更小、效率更高的电源转换器正在不断发展。在此背景下,可再生能源应用中对精心设计的电源转换器的需求日益增加,以减少能源利用率并处理各种负载。本文提出了一种用于 DC-DC 转换的中心抽头桥级联串联谐振 LC 双有源桥 (DAB) 转换器。所提出的转换器的零件数量少,可以实现高功率密度设计,同时降低成本。由于采用电流阻断特性消除了反向电流,因此所提出的转换器降低了传导损耗。反向电流阻断还可以在很宽的工作范围内实现零电压开关 (ZVS) 和零电流开关 (ZCS)。因此,与传统的 DAB 转换器相比,使用简单的固定频率调制 (FFM) 方案可提供更宽的工作范围。基于传导损耗和开关损耗对所提出的转换器和传统的 DAB 转换器进行了全面比较,以说明性能改进。最后,通过仿真和实验结果验证了所提出的转换器的有效性。
碳化硅 (SiC) 是一种宽带隙 (WBG) 半导体材料,与硅 (Si) 相比,它具有多种优势,例如最大电场更高、导通电阻更低、开关速度更快、最大允许结工作温度更高。在 1.2 kV - 1.7 kV 电压范围内,SiC 功率器件有望取代 Si 绝缘栅双极晶体管 (IGBT),用于高效率、高工作温度和/或减小体积的应用。特别是,SiC 金属氧化物半导体场效应晶体管 (MOSFET) - 电压控制且常关断 - 是首选器件,因为它易于在使用 Si IGBT 的设计中实现。在这项工作中,研究了 SiC 器件的可靠性,特别是 SiC MOSFET 的可靠性。首先,研究了并联两个分立 SiC MOSFET 的可能性,并通过静态和动态测试进行了验证。发现并联连接没有问题。其次,通过长期测试研究了 SiC MOSFET 体二极管的阈值电压和正向电压的漂移。还发现这些可靠性方面没有问题。第三,通过对标准模块的寄生电感建模以及这些电感对栅极氧化物的影响,讨论了封装对芯片可靠性的影响。该模型显示了杂散电感和寄生元件的不平衡,这对高速开关来说是个问题。对湿度对封装在同一标准封装中的 SiC MOSFET 芯片和 SiC 肖特基芯片结端的影响进行的长期测试表明,一些位于户外的模块会过早退化。然后,通过实验和模拟研究了三种不同类型的 1.2 kV SiC 开关器件(双极结型晶体管、结型场效应晶体管和 MOSFET)的短路行为。对每个器件进行详细的电热分析,以支持在故障期间快速关闭器件的必要性。得出了坚固、快速的短路保护设计指南。对于每个器件,都设计、构建了一个短路保护驱动器,并通过实验进行了验证。研究了使用 SiC MOSFET 设计无二极管转换器的可能性,重点是通过体二极管进行浪涌电流测试。发现的故障机制是 npn 寄生双极晶体管的触发。最后,进行了生命周期成本分析 (LCCA),结果表明在现有的 IGBT 设计中引入 SiC MOSFET 具有经济意义。事实上,由于效率更高,初期投资在后期可以节省。此外,可靠性也得到了提高,从风险管理的角度来看,这是有益的。虽然初始转换器成本高出 30%,但采用 SiC MOSFET 的转换器在 20 年内的总投资大约低 30%。关键词:碳化硅、金属氧化物半导体场效应晶体管 (MOSFET)、结型场效应晶体管 (JFET)、双极结型晶体管 (BJT)、可靠性、故障分析、可靠性测试、短路电流、湿度、谐振转换器、串联谐振转换器 (SLR)、基极驱动电路、栅极驱动电路、生命周期成本分析 (LCCA)。