19.C总内部反射发生时,当光从光密度较高的介质变成光密度较低的介质时。如果入射角超过临界角,则将光反射回相同的培养基,而不是折射
因此,给定最终宽度和曲率半径 R,就可以预先确定所需光刻胶的高度。该模型假设光刻胶和基板之间的临界接触角没有影响,并为近似回流光刻胶形状提供了一个起点。参考文献 2 将临界角作为次要约束,并发现对于 S1818 光刻胶,其对回流温度(120 到 170°C 之间)的依赖性大约为 y = -0.2431x + 48.344。参考文献 3(配套论文)研究了 3 种描述光刻胶形状的分析模型。模型 A 使用 Sheridan 等人提出的 4 阶多项式模型;这与模型 B(“总和模型”)和模型 C(“乘积”模型)进行了比较,后两者均使用 4 阶多项式来捕捉与球形概念的偏差。使用边界条件计算系数,包括:面积、中心高度、边缘=0 和临界角。
第 2 章。光纤。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1 光的本质。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1.1 作为电磁波的光。。。。。。。。。。。。。。。。。。。。16 2.1.2 极化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.1.3 干扰。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.2 在光纤上传输光。。。。。。。。。。。。。。。。。。。。。。。。。.25 2.2.1 玻璃特性 .......................29 2.2.2 传输容量 .........................33 2.2.3 操作原理 ...........................33 2.2.4 光纤折射率分布 ........................36 2.3 光在多模光纤中的传播 .........。。。。。。。。。。。。39 2.3.1 斯涅尔定律。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.2 临界角 ............。。。。。。。。。。。。。。。。。。。。41 2.3.3 数值孔径 (NA)。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.3.4 传播模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.3.5 模式耦合。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50 2.3.6 模态噪声。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 2.3.7 命名模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 2.4 单模传播。。。。。。。。。。。。。。。。。。。。。。。。。。。。56 2.4.1 单模特性 ...... div>............。 。 。 。 。 。 。 . 57 2.4.2 单模光纤中的色散 . . . . . . . . . . div> . . . . . . . . . . . 。 59 2.4.3 模式划分噪声。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 67 2.4.4 反射和回波损耗变化 . . . . . .。。。。。。。.57 2.4.2 单模光纤中的色散 .......... div>...........。59 2.4.3 模式划分噪声。。。。。。。。。。。。。。。。。。。。。。...... div>67 2.4.4 反射和回波损耗变化 ............< div> 。。。。。。..67 2.4.5 非线性高功率效应 ..。。。。。。。。 < /div>.............69 2.5 塑料光纤 (POF) ... div>............。 。 。 。 。 。 。 。 。 。 。 。 。 74 2.5.1 POF 研究。 。 。 。 。 。。。。。。。。。。。。。。74 2.5.1 POF 研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.76 2.6 硬质聚合物(塑料)包层(二氧化硅)光纤 (HPCF) .........< div> 。。。。。。76
自 1993 年 Shuji Nakamura 制成第一只 GaN 基蓝光发光二极管 (LED) 以来 [1],基于 III 族氮化物材料的 LED 发展迅速并得到了广泛的应用。然而,导致绿光 LED 效率低下的“绿光隙”一直未能得到解决,而蓝光和红光 LED 却实现了较高的发光效率 [2,3]。造成上述问题的原因之一是 InxGa1-xN/GaN 多量子阱 (MQW) 中铟组分的增加,而这是为了使 InGaN 基 LED 能够发出更长的波长的光。由于 InGaN 与 GaN 之间的晶格常数和热膨胀系数不匹配 [4,5],以及 InN 在 GaN 中的低混溶性 [6],高铟组分 InGaN QW 的绿光 LED 会遭受晶体质量劣化。同时,还会产生大量的位错,它们充当非辐射复合中心[7],对发光是不利的。另一方面,有源区产生的光很难从高折射率半导体(n GaN = 2.5)逸出到空气中(n air = 1)。内部光的临界角(θ c )或逸出锥仅为~23.6°[θ c = sin −1(n air /n GaN )],超过此角度发射的光子会发生全内反射,因此只有一小部分光可以逸出到周围的空气中[8]。绿光是三原色之一,提高绿光LED的发光效率是实现高效率、高亮度RGB(红、绿、蓝)LED的关键。