橄榄油生产会产生大量的果渣,这些果渣通常被丢弃在土壤中,对农业和环境产生不利影响。此外,气候变化加剧了植物病害,并促进了有毒植物化学物质在农业中的使用。然而,橄榄磨坊废料具有作为可重复使用和宝贵的生物资源的巨大潜力。我们使用稀释乙醇(一种环保溶剂)提取了含有短和长寡半乳糖醛酸苷、短阿拉伯寡糖和多糖的级分。获得的提取物引发了拟南芥幼苗中植物先天免疫的关键特征,包括丝裂原活化蛋白激酶 MPK3 和 MPK6 的磷酸化以及防御基因(如 CYP81F2 、 WRKY33 、 WRKY53 和 FRK1 )的上调。值得注意的是,用橄榄果渣提取物对成年拟南芥和番茄植株进行预处理可启动防御反应,增强其对植物病原菌灰葡萄孢和丁香假单胞菌的抵抗力。我们的研究结果强调了在橄榄油生产后期收集的两相橄榄果渣在低成本和可持续的聚糖诱导剂中进行升级再造的机会,有助于减少化学合成农药的使用。
中国樱桃(Prunus pseudocerasus)是中国主要的核果作物之一,具有十分重要的意义。然而,由于缺乏高质量的基因组资源,人工改良其性状和遗传分析具有挑战性,这主要归因于难以解析其四倍体和高度杂合的基因组。在此,我们使用 PacBio HiFi、Oxford Nanopore 和 Hi-C 组装了品种‘诸暨短柄饼’的染色体水平、单倍型解析基因组,包含 993.69 Mb,组装成 32 条假染色体。单倍型内比较分析揭示了广泛的基因组内序列和表达一致性。系统发育和比较基因组分析表明,P. pseudocerasus 是一个稳定的同源四倍体物种,与野生的 P. pusilliflora 密切相关,两者大约在 1834 万年前分化。与其他李属植物类似,樱桃也经历了一次常见的全基因组复制事件,该事件发生在大约 1.3996 亿年前。由于果实硬度低,樱桃不适合长距离运输,从而限制了其在中国的快速发展。在成熟果实阶段,樱桃品种‘诸暨短柄梨’的硬度明显低于樱桃品种‘黑珍珠’。硬度的差异归因于果胶、纤维素和半纤维素含量变化的程度。此外,比较转录组分析发现了两个参与果胶生物合成的基因 GalAK-like 和 Stv1,这可能是造成‘诸暨短柄梨’和‘黑珍珠’果实硬度差异的原因。PpsGalAK-like 和 PpsStv1 的瞬时转化会增加原果胶含量,从而提高果实硬度。我们的研究为中国樱桃功能基因组学研究和重要园艺性状的提升奠定了坚实的基础。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年5月11日。; https://doi.org/10.1101/2023.06.17.545412 doi:biorxiv preprint
1 西班牙穆尔西亚,埃斯皮纳多大学园区,CEBAS-CSIC(安全教育与应用生物学中心-高等科学技术研究委员会)植物育种系水果生物技术组,E-30100; mmartin@cebas.csic(MM-V.); cperez@cebas.csic.es (CP-C.); nalbur@cebas.csic.es (NA) 2 伊朗设拉子大学农学院园艺科学系,设拉子 7144165186; sama_rahimi@yahoo.com (社交媒体链接) smemahdavi@gmail.com (SMEM) 3 水果育种组,植物育种系,CEBAS-CSIC(教育、应用生物学和安全中心-高等科学技术研究委员会),埃斯皮纳多大学校区,E-30100 穆尔西亚,西班牙; gortuno@cebas.csic.es(GO-H.); jasalazar@cebas.csic.es (JAS) 4 匈牙利农业与生命科学大学水果种植研究中心,匈牙利布达佩斯 1223; bujdoso.geza@uni-mate.hu * 通信地址:pmartinez@cebas.csic.es;电话:+34-968-396-200 † 这些作者对这项工作做出了同等贡献。
摘要 之前,我们描述了大量果蝇菌株,每个菌株都携带一个人工外显子,其中包含一个基于 CRISPR 介导的同源重组插入目标基因内含子中的 T2AGAL4 盒。这些等位基因可用于多种应用,并且已被证明非常有用。最初,基于同源重组的供体构建体具有较长的同源臂(>500 bps),以促进大型构建体(>5 kb)的精确整合。最近,我们表明,供体构建体的体内线性化使得能够使用短同源臂(100-200 bps)将大型人工外显子插入内含子中。较短的同源臂使得商业合成同源供体成为可能,并最大限度地减少了供体构建体生成的克隆步骤。不幸的是,大约 58% 的果蝇基因缺乏适合所有注释异构体中人工外显子的编码内含子整合。在这里,我们报告了新构建体的开发,这些构建体允许用 KozakGAL4 盒替换缺乏合适内含子的基因的编码区,从而产生与目标基因类似地表达 GAL4 的敲除/敲入等位基因。我们还开发了定制载体骨架,以进一步促进和改善转基因。在包含目标基因 sgRNA 的定制质粒骨架中合成同源供体构建体,无需注射单独的 sgRNA 质粒,并显著提高了转基因效率。这些升级将使几乎所有果蝇基因都能靶向,无论外显子-内含子结构如何,成功率为 70-80%。
