当前最先进的量子点发光二极管的外部量子效率受限于较低的光子输出耦合效率。采用纳米棒、纳米片和点盘纳米晶体等取向纳米结构的发光二极管有利于光子输出耦合;然而,它们的内部量子效率往往会受到影响,因此实现净增益一直颇具挑战性。本文报道了各向同性形状的量子点,其特征是由纤锌矿相和闪锌矿相组成的混合晶体结构。纤锌矿相促进偶极-偶极相互作用,从而使溶液处理薄膜中的量子点定向,而闪锌矿相则有助于提升电子态简并度,从而实现定向光发射。这些特性的结合在不影响内部量子效率的情况下改善了光子输出耦合。制备的发光二极管的外部量子效率为 35.6%,并且可以在初始亮度为 1,000 cd m –2 的情况下连续运行 4.5 年,性能损失最小约为 5%。
1 奥地利维也纳医科大学维也纳综合医院综合癌症中心泌尿科;2 瑞士苏黎世苏黎世大学医院泌尿科;3 德国汉堡汉堡-埃彭多夫大学医学中心泌尿科;4 法国图尔图尔大学医院泌尿科;5 瑞士卢塞恩卢塞恩州医院泌尿科;6 沙特阿拉伯达曼法赫德国王专科医院泌尿科;7 伊朗大不里士医科大学循证医学研究中心;8 意大利都灵都灵大学莫利内特医院泌尿科;9 日本冈山大学医学、牙科和药学研究生院泌尿科;10 俄罗斯莫斯科谢切诺夫大学泌尿外科和生殖健康研究所;11 日本东京慈惠大学医学院泌尿科; 12 伊朗德黑兰 Shahid Beheshti 医科大学男性健康与生殖健康研究中心;13 约旦安曼约旦大学医院特殊外科系泌尿外科分部;14 加拿大蒙特利尔蒙特利尔大学健康中心泌尿外科分部癌症预后与健康结果科;15 美国纽约州纽约威尔康奈尔医学院泌尿外科系;16 美国德克萨斯州达拉斯德克萨斯大学西南分校泌尿外科系;17 捷克共和国布拉格查理大学第二医学院泌尿外科系;18 奥地利维也纳卡尔兰德斯坦纳泌尿外科和男科学研究所;19 荷兰阿纳姆欧洲泌尿外科研究基金会协会
MMC对RH30和RD球体的影响。 a如果在Rh30 -arms-(左)(左)和RD -erms-(右)球体上染色(FN; Green)和胶原I(大肠杆菌;红色),则在不存在MMC处理的情况下冷冻切片(DAPI,cell核,蓝色),比例尺=50μm。 B胶原蛋白I的平均荧光强度(MFI)和球体冷冻切片中的纤连蛋白表达。 c离开。 在所有测试条件下播种在ULA板中的球体的相对形图像,以及井底RH30粘附细胞的细节。 比例尺=右200μm。 如果在RH30和RD球体中用MMC处理的纤连蛋白和胶原蛋白I的染色显示RH30球体下方的粘附细胞的存在。 比例尺=50μm。 d无需MMC处理的RH30和RD球体的形状参数(面积,周长,圆度和坚固),n = 12,Student t -test*p <0.05,** p <0.01,**** p <0.0001。 (为了解释该图传奇中对颜色的引用,读者被转介给本文的网络版本。)MMC对RH30和RD球体的影响。a如果在Rh30 -arms-(左)(左)和RD -erms-(右)球体上染色(FN; Green)和胶原I(大肠杆菌;红色),则在不存在MMC处理的情况下冷冻切片(DAPI,cell核,蓝色),比例尺=50μm。 B胶原蛋白I的平均荧光强度(MFI)和球体冷冻切片中的纤连蛋白表达。c离开。在所有测试条件下播种在ULA板中的球体的相对形图像,以及井底RH30粘附细胞的细节。比例尺=右200μm。如果在RH30和RD球体中用MMC处理的纤连蛋白和胶原蛋白I的染色显示RH30球体下方的粘附细胞的存在。比例尺=50μm。 d无需MMC处理的RH30和RD球体的形状参数(面积,周长,圆度和坚固),n = 12,Student t -test*p <0.05,** p <0.01,**** p <0.0001。(为了解释该图传奇中对颜色的引用,读者被转介给本文的网络版本。)
由于复合材料具有较高的强度重量比,复合材料在美国海军飞机和其他舰艇中的使用越来越普遍。这些军事结构的性质使它们承受大量振动和循环载荷,从而导致疲劳并最终失效。这项研究的主要目的是开发一个可靠的模型来预测复合材料的疲劳失效,以确定这些军事结构的使用寿命。这项研究确定了玻璃纤维的疲劳失效与纤维和环氧基质复合材料的疲劳失效之间的相关性。对不同取向的玻璃纤维和复合材料进行了测试,应变率从 0.03 到 0.07,并进行了比较。创建了一个数学表达式来模拟弹性模量随循环次数的指数下降并预测失效循环。该数学模型能够预测实验结果 12% 以内的失效循环,并且纤维和复合材料的弹性模量都遵循相同的下降趋势,表明纤维的失效行为与复合材料的失效行为之间存在相关性。
随着城市人口的增长,气候变化的影响,可用于农业扩张的土地有限,以及需要有效的分配系统,在运输过程中损失最小。新技术可能会发挥作用。可以引入哪些激励措施来确保新品种解决食品,饲料,纤维和燃料的生物安全性和安全性?
摘要剑麻纤维和基于生物的环氧树脂的组合具有良好的潜力,可提供具有改进或同等机械性能的环保生物复合材料。然而,由于键在化学结构(极性)函数组中的电荷在原子上的不同分布引起的两种材料之间的较差相互作用需要通过各种技术对组成部分的一个表面进行修改。本文讨论了有关多种治疗方法的可用文献,以通过实现有利的润湿性,机械互锁以及通过化学键合的改善相互作用来改善剑麻纤维和热套环氧矩阵之间的粘附。表明,在NaOH溶液中洗涤纤维,然后冲洗和干燥是普遍的化学处理。通过NAOH处理,研究人员观察到了清洁纤维,这促进了环氧基质的更好粘附。偶联剂(例如硅烷处理)表现出对纤维吸收的抗性的提高。热处理通过增加纤维素的结晶度,从而影响纤维的形态。还观察到,纤维矩阵粘附的改善对复合材料的冲击强度有不利影响。
Bernd Richter、Philipp Wartenberg、Stephan Brenner、Johannes Zeltner、Christian Schmidt、Judith Baumgarten、Andreas Fritscher、Martin Rolle、Uwe Vogel 德国德累斯顿 Fraunhofer IPMS 一种新型半透明硅基 OLED 微显示技术,为纤薄近眼光学器件提供了新的光学设计机会
