本报告简要讨论了美国国家可再生能源实验室 (NREL) 对 Verdant Power 第五代 (Gen5) 水下潮汐能转换涡轮机主轴密封件进行的加速寿命测试的观察结果和结果,该涡轮机于 2020-2021 年在罗斯福岛潮汐能项目中成功运行。为了评估该部件的 5 年服务间隔 (SI),主轴密封件以每分钟 160 转的转速几乎连续运行了 137 天,同时试验台记录了水压、隔离液压力、温度和循环次数,约占 SI 的 40%。还进行了一项单独的测试来测量橡胶驱动环的老化行为。对于 SI 评估,水压储液器保持恒定为 199.9 kPa (29 psi)。隔离液压力在整个测试期间保持相对恒定,但降至 69.6 kPa (10.1 psi)。整个测试过程中未观察到隔离液泄漏。在测试机因预定的建筑物维护程序而断电后,密封件突然出现故障。重新启动后,主轴密封件完全失去了防止水进入的能力。确切原因尚不清楚,但据信是密封件组装问题,或断电期间或之后密封件组件的对齐方式发生变化。拆卸密封件后,其中一个石墨密封环出现严重磨损。Verdant Power、Dovetail Solutions LLC 和 Garlock Sealing Technologies 审查了密封件磨损情况,以对结果进行一致评估。NREL 将密封面送回 Garlock,对密封面的审查表明测试台存在错位,包括整体错位(整个轴移动)和前后错位(水侧运动比空气侧运动更多)。Garlock 进一步指出,密封件通常可以吸收轻微的错位;因此,注意到的磨损导致测试台中断。因此,Gen5 密封件在断电前仍能运行表明其长期性能良好。根据这些结果,建议通过 NREL 的海洋能源研究测试专业知识和访问 (TEAMER) 计划进行后续测试,以纠正协议和组装问题,以进一步评估该组件的 SI。
注意:主轴校准工具还可用于检查您已安装的任何其他 X-10 锁。只需卸下主轴螺钉并将主轴校准工具安装到已安装的锁中即可。如果拧紧,则表明主轴已正确就位。只需卸下工具并重新安装主轴螺钉即可。如果主轴校准工具未拧紧,则表明主轴未正确就位,除非纠正此情况,否则将立即锁定。请联系技术人员立即纠正此情况或致电国防部锁定计划 800-290-7607 寻求帮助。
风力涡轮机主轴承的疲劳寿命受用作润滑剂的油脂状态的极大影响。遗憾的是,由于与降解机制和油脂批次质量变化相关的不确定性,通过预测模型监测油脂状况可能是一项艰巨的任务。最终,油脂质量变化导致的油脂寿命预测差异可能导致轴承疲劳寿命预测不准确。问题的复杂性需要一种新颖的解决方法;在本文中,我们提出了一种新的混合物理信息神经网络模型。我们构建了一个嵌入为循环神经网络单元的轴承疲劳损伤累积混合模型,其中用于轴承疲劳损伤累积的降阶物理模型和表示油脂降解机制的神经网络,该机制量化最终加速轴承疲劳的油脂损伤。我们概述了一种两步概率方法来量化油脂质量变化。在第一步中,我们利用混合模型来学习当质量为分布中位数时的油脂降解。在第二步中,我们采用第一步中的中值预测器,并通过检查每台风力涡轮机的油脂样本来跟踪质量分布的分位数。我们最后通过数值实验展示我们的方法,在该实验中,我们测试了质量变化的随机实现和样本数量的影响
上海理工大学机电工程学院,上海 200093 通讯作者,电子邮箱:fkg11@163.com 摘要 随着主轴转速的提高,发热成为高速电主轴的关键问题。为了获得电主轴的实际热行为,本文开发了热特性数字孪生系统。热特性数字孪生的原理是通过数据采集系统和修正模型映射和修正热边界条件来模拟机床的热行为。所提出的数字孪生系统包括数字孪生软件、数据采集系统和嵌入传感器的物理模型三个模块。数字孪生软件基于 Qt 使用 C++ 编程语言和 ANSYS 二次开发开发。提出热边界修正模型,利用数据采集系统测得的热关键点温度来修正发热和接触热阻。为了验证数字孪生系统的预测精度,在电主轴上进行了试验。实验结果表明,数字孪生系统预测精度大于95%,对提高热特性仿真与热优化的精度具有重要意义。 关键词 数字孪生·热特性·精度仿真·电主轴 1.引言 热行为预测在数控机床热优化中具有重要意义。电主轴是数控机床的核心,也是其主要热源。数控机床向超高速、超高精度方向发展的趋势,对电主轴热特性的精确分析提出了更严格的要求。影响主轴温度场和热变形准确预测的主要因素来自产热和接触热阻两个方面,在主轴工作过程中,产热和接触热阻都不是恒定的。由于主轴工作时伴随产热,引起热变形,使主轴零部件接触面间产生热应力,接触压力的变化使接触热阻和内部热源产热量也发生变化。为了提高热行为预测精度,热特性数字孪生成为模拟主轴单元温度场分布的最佳选择。数字孪生是指通过构建数字化虚拟实体与物理实体之间的映射关系,实现虚实映射。它将物理空间中的物理实体映射到数字空间,具有数据映射、分析决策、控制执行等功能。近年来,许多学者对数字孪生进行了卓有成效的研究工作,形成了成熟的理论体系。在理论方面,数字孪生的概念最早由Grieves教授[1]于2003年提出,随后NASA将该概念应用于阿波罗计划中的飞行器。Dmitry Kostenko等[2]研究了设备数字孪生在静态和动态领域的应用
利阿贺拿是主赐予利希的通讯设备,用于确定适当的行进方向。该设备包含两个指针,其中只有一个指针是提供方向信息的必需指针。但利阿贺拿的功能不仅仅是一个简单的指南针,因为它还需要信念才能正确操作。由于单个指针始终“指向”某个方向,因此需要额外的指针来指示是否可以依赖第一个指针。第二个指针的拟议用途符合现代容错计算机系统中使用的完善的工程原理,称为“投票”,其中比较两个相同的过程状态,如果它们相同,则宣布正确,如果它们不同,则宣布不正确。因此,当第二个指针与第一个指针重合时,表示操作正确,而当第二个指针正交时,表示非操作。
利阿贺拿是主赐给李海的通讯设备,用来决定正确的行进方向。这个设备有两个指针,只有一个指针是必要的,用来提供方向信息。但利阿贺拿的功能不只是一个简单的指南针,因为它还需要信心才能正确操作。由于一个指针总是“指向”某个方向,所以需要额外的指针来指示第一个指针是否可以依赖。第二个指针的这个拟议用途符合现代容错计算机系统中一种成熟的工程原理,称为“投票”,其中比较两个相同的过程状态,如果它们相同,则宣布正确,如果它们不同,则宣布不正确。因此,当第二个指针与第一个指针重合时,表示操作正确,而当它们正交时,表示未操作。
自我监测和诊断功能 (NIST, 2005)。过去几年,人们一直在研究实现自我诊断、传感器集成的“智能”主轴 (Zhang et al., 2006a, 2006b) 相关的根本问题。这些研究包括研究主轴集成传感 (例如传感器数量和传感器放置策略) 与机器主轴上的传感质量 (例如信噪比 (SNR) 和特征覆盖的有效性) 之间的相关性 (Zhang et al., 2006a),以及开发先进的信号处理技术,结合从时间、尺度和频域提取的特征来增强主轴缺陷诊断和健康评估 (Zhang et al., 2006b)。此外,研究的一个重要方面是设计一个动态的、数据驱动的软件接口,用于在线主轴状态监测和诊断中与机器操作员和决策者的通信(Zhang 等人,2007 年)。高效的软件设计和实施需要模块化和可互换的架构。一项相关的工作是基于状态维护的开放系统架构 (OSA-CBM) 计划,该计划由机械信息管理开放系统联盟 (MIMOSA) 设立(Discenzo 等人,1998 年)。OSA-CBM 计划的目标是开发分布式 CBM 软件组件的开放架构和标准。这种架构已根据功能层进行定义(图 1),其中包括
摘要 – 本文介绍了一种基于开放系统架构的在线主轴健康监测系统软件设计。该软件使用 LabVIEW 图形编程语言实现,并在两种类型的窗口中显示主轴健康状态:面向标准机器操作员的简化主轴状态显示和警告窗口(操作员窗口)和面向机器专家的高级诊断窗口(专家窗口)。使用基于解析小波的包络谱算法实现了有效和高效的主轴缺陷检测和定位能力。该软件提供了用户友好的人机界面,并直接有助于开发新一代智能机床。关键词 – 软件设计、开放系统架构、主轴健康监测、解析小波、智能加工系统
简介 感谢您选择三菱数控装置。 本使用说明书介绍了使用本交流伺服/主轴的操作和注意事项。 操作不当可能会导致不可预见的事故,因此请务必仔细阅读本使用说明书以确保正确使用。 确保将本使用说明书交付给最终用户。 始终将本手册存放在安全的地方。 本手册介绍了 MDS-CH 系列的所有规格。 但是,每个 CNC 可能不提供所有规格,因此在开始使用之前,请参阅手头 CNC 的规格。 阅读本手册的注意事项 (1) 由于本规格手册的描述涉及一般 NC,因此对于各个机床的规格,请参阅相应机器制造商发布的手册。 机器制造商发布的手册中描述的“限制”和“可用功能”优先于本手册中的描述。 (2) 本手册描述了尽可能多的特殊操作,但应记住,本手册中未提及的项目无法执行。
感谢您选择三菱数控装置。本使用说明书描述了使用此交流伺服/主轴的操作和注意事项。操作不当可能会导致不可预见的事故,因此请务必仔细阅读本使用说明书以确保正确使用。确保将本使用说明书交付给最终用户。始终将本手册存放在安全的地方。本手册描述了 MDS-C1-SPA 系列的所有规格。但是,每个 CNC 可能不提供所有规格,因此在开始使用之前请参阅手头 CNC 的规格。阅读本手册的注意事项 (1) 由于本规格手册的描述涉及一般 NC,因此对于各个机床的规格,请参阅相应机器制造商发行的手册。机器制造商发行的手册中描述的“限制”和“可用功能”优先于本手册中描述的。 (2) 本手册描述了尽可能多的特殊操作,但应记住,本手册中未提及的项目无法执行。