执行的功能:研究、设计和实施基于共享自主方法的新系统,通过非侵入式脑机接口 (BCI) 导航移动辅助机器人。从 BCI 的角度来看,已经探索和实施了两种不同的大脑刺激范式:i)感觉运动节律 (SMR),ii) 视觉事件相关电位 (P300)。从人机交互的角度,我们研究了人们如何看待旨在与老年人互动的社交辅助机器人,以及人们对它们的期望。此外,一些在商业机器人平台上监测和协助老年人以及个性化他们互动的主动服务已经实现,包括基于人的骨骼和面部识别的认知锻炼和身体锻炼、从上下文中提取信息的图像处理和计算机视觉技术。与博士一起RD Benedictis,我负责家庭环境中的远程呈现场景。
1 乌克兰国立高等教育机构“Vasyl Stefanyk Precarpathian 国立大学”,乌克兰,liliavojch2017@gmail.com 2 伊万诺-弗兰科夫斯克国立医科大学,乌克兰,n.golod@ukr.net 3 国立皮罗戈夫纪念医科大学,乌克兰,medredaktor@gmail.com 4 乌克兰国立高等教育机构“Vasyl Stefanyk Precarpathian 国立大学”,乌克兰,zastavnaom@gmail.com 5 国立 Dragomanov 师范大学,chepurnal@gmail.com 6 苏梅马卡连科国立师范大学,乌克兰,petrorybalko13@gmail.com 7 苏梅国立农业大学,乌克兰,homenko.symu@gmail.com 8 Мykhailo Kotsiubynskyi 文尼察国立师范大学,乌克兰,valentina777808@gmail.com 9 国立皮罗戈夫乌克兰纪念医科大学,spkolisnyk@vnmu.edu.ua 10 乌克兰帕夫洛·蒂奇纳乌曼国立师范大学,in77na77@ukr.net
1 piauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piaui
科学委员会巴里,乔纳森。埃克塞特大学人文学院病史中心。Corbellini,吉尔伯托。社会科学和人文科学,文化遗产,consiglio nazionale delle ricerche。Fantini,Bernardino。 Geneva大学的AccultéDeMédecine。 Gazzaniga,瓦伦蒂娜。 部门 罗马·拉萨皮安扎(Rome La Sapienza)的生物技术与医学外科科学生物技术和医学科学。 giaretta,Pierdaniele。 部门 帕多瓦大学哲学,社会学,教育和应用心理学的。 Gourevitch,Danielle。 巴黎的 ecole pratique des hautes eTudes(ephe)。 Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Fantini,Bernardino。Geneva大学的AccultéDeMédecine。 Gazzaniga,瓦伦蒂娜。 部门 罗马·拉萨皮安扎(Rome La Sapienza)的生物技术与医学外科科学生物技术和医学科学。 giaretta,Pierdaniele。 部门 帕多瓦大学哲学,社会学,教育和应用心理学的。 Gourevitch,Danielle。 巴黎的 ecole pratique des hautes eTudes(ephe)。 Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Geneva大学的AccultéDeMédecine。Gazzaniga,瓦伦蒂娜。 部门 罗马·拉萨皮安扎(Rome La Sapienza)的生物技术与医学外科科学生物技术和医学科学。 giaretta,Pierdaniele。 部门 帕多瓦大学哲学,社会学,教育和应用心理学的。 Gourevitch,Danielle。 巴黎的 ecole pratique des hautes eTudes(ephe)。 Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Gazzaniga,瓦伦蒂娜。部门罗马·拉萨皮安扎(Rome La Sapienza)的生物技术与医学外科科学生物技术和医学科学。giaretta,Pierdaniele。部门。Gourevitch,Danielle。 巴黎的 ecole pratique des hautes eTudes(ephe)。 Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Gourevitch,Danielle。ecole pratique des hautes eTudes(ephe)。Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Mazzarello,Paolo。部门帕维亚大学神经科学。Silvano,Giovanni。部门历史和地理科学与古代世界,帕多瓦大学。Thiene,Gaetano。部门心脏,胸科和血管科学,帕多瓦大学。van den Tweel,1月。乌得勒支大学医学中心病理学。
在过去十年中,石墨烯因其独特的电气特性(如高电子迁移率和高饱和速度 [1])而备受关注。遗憾的是,由于没有带隙,石墨烯不适合数字电路应用。在模拟 RF 电路中,传统的 MOSFET 结构(如石墨烯场效应晶体管 (GFET))能够达到约 400 GHz 的截止频率 (f T ) [2],但输出特性的非饱和行为 [3] 导致重要 RF 性能指标的下降,因为固有电压增益 A V = g m / g ds 。出于这个原因,最近提出了新的基于石墨烯的晶体管概念,如石墨烯基晶体管 (GBT, [4]),利用通过薄电介质的量子隧穿,如热电子晶体管 (HET, [5])。GBT 由垂直结构组成(图1 中的插图),其中石墨烯片用作控制电极,即基极 (B),位于图1 中的 x = 0 处。基极通过发射极-基极和基极-集电极绝缘体(分别为 EBI 和 BCI)与金属或半导体发射极 (E) 和金属集电极 (C) 隔开 [4]。在正常运行中(即正基极-发射极偏压,V BE > 0 和正集电极-基极偏压,V CB > 0),电子隧穿 EBI,垂直于石墨烯片 (GR) 穿过基极,然后沿着图1 中的 x 方向漂移穿过 BCI 的导带 (CB)。尽管其单原子厚度,
a 化学和生物防御应用分子建模实验室 (LMCBD),军事工程学院,里约热内卢/RJ,巴西;b 里约热内卢天主教大学化学系,里约热内卢/RJ,巴西;c 埃斯皮里图圣托联邦学院 - 维拉韦利亚分校化学系,维拉韦利亚/ES,巴西;d 埃斯皮里图圣托联邦大学 PPGQUI(化学研究生课程),维多利亚/ES,巴西;e 军事工程学院化学工程系,里约热内卢/RJ,巴西;f 化学、生物、放射和核防御研究所 (IDQBRN),巴西陆军技术中心 (CTEx),里约热内卢/RJ,巴西;g 化学协调,里约热内卢联邦教育科学与技术学院,里约热内卢/RJ,巴西; h 赫拉德茨克拉洛韦大学理学院化学系,捷克共和国赫拉德茨克拉洛韦; i INRS,Armand-Frappier Sant e Biotechnologie 中心 531,Boulevard des Prairies,Laval,QC,加拿大
参考指南 本指南分为两部分:建筑和花园。主题以高亮显示,以便您快速找到您感兴趣的主题。 纳什尔雕塑中心 纳什尔雕塑中心于 2003 年开业。该建筑面朝达拉斯艺术区中心的弗洛拉街。我们的前门与达拉斯艺术博物馆和克罗亚洲艺术博物馆的入口对齐,为视觉艺术和艺术节创造了一个中央公共空间。 建筑 1997 年,雷蒙德·纳什尔选择意大利建筑师伦佐·皮亚诺来设计博物馆。纳什尔很欣赏皮亚诺为休斯顿的梅尼尔收藏和赛·托姆布雷画廊、巴塞尔的贝耶勒基金会和巴黎的蓬皮杜艺术中心所做的设计。纳什尔被皮亚诺将博物馆打造为市中心喧嚣中的一片绿洲的理念所吸引。在职业生涯早期,皮亚诺曾为路易斯·康工作,后者是沃斯堡金贝尔艺术博物馆原建筑的建筑师。两位建筑师都巧妙地散射了德克萨斯州强烈的阳光,为观赏艺术创造了最佳环境。皮亚诺的设计为这个地方注入了考古氛围。这座建筑围绕着六面平行的石墙,从北到南。由于前后墙和天花板都是玻璃的,所以石墙似乎是独立的。这些墙似乎是一座古老的古典建筑的遗迹,是达拉斯市中心现存的一处宏伟遗址。这种设计使艺术、建筑和自然之间建立了连续的视觉联系。这座建筑的设计吸引着游客进入。建筑的前后墙都是玻璃的。这样路人就可以看到画廊里的艺术品,甚至可以看到后面的花园。没有路缘和楼梯,进一步增强了透明和包容的精神。通过参与街头生活,皮亚诺在世俗(街道)和神圣(中心)之间建立了一种积极的关系。
通过将能量转换链分成两个单独建模的部分,对发电厂的性能进行了数字模拟:(I)波浪到气动能量转换;(II)气动到电能转换。模型 I 基于线性水波理论,使用在里斯本国家土木工程实验室(比例 1:35)和科克大学(比例 1:25)不规则波浪盆中进行的模型测试结果作为输入数据(这些模型测试是在第一阶段合同 JOU2-CT93-0314 的框架内进行的)。模型 II 模拟了 Wells 涡轮机和发电机中的能量转换,并包括受控泄压阀(旁通阀)的影响。Wells 涡轮机的气动性能基于涡轮机模型测试的实验数据(可从之前在里斯本进行的实验室工作中获得)。假设涡轮机有实际的机械损耗,发电机也有机械和电气损耗。控制转速(以匹配波浪功率水平)的能力已得到适当建模。通过亚速尔群岛施工现场的 44 条波浪测量记录及其发生频率模拟了当地波浪气候。为了优化涡轮机规格,对涡轮机额定功率和涡轮机阻尼系数的不同组合进行了模拟。根据这些结果,做出了决定
由于国内和国际挑战,孟加拉国正面临多重障碍。俄罗斯-乌克兰战争在某些情况下破坏了孟加拉国的经济。本文的目的分别是探讨俄罗斯和乌克兰战争对孟加拉国经济的影响、调查孟加拉国的能源危机、探讨战争对各国间贸易关系的影响以及寻找解决孟加拉国当前金融危机的出路。本文采用定性研究方法进行研究,并增加了内容分析和审查二手材料。本研究的结果表明,俄罗斯和乌克兰的冲突严重破坏了世界各地的国际贸易和经济。食品、小麦市场、食用油、农业部门、能源部门、美元储备和成衣部门只是孟加拉国面临重大困难的几个领域。由于俄罗斯和乌克兰的战争,吃非素食(如肉类和其他食物)的人越来越少。孟加拉国当局需要重点发展农业部门,降低通货膨胀率,通过控制洗钱来加强银行业,并确保良好的治理,以应对孟加拉国目前的危机和挑战。
摘要 2022 年 2 月 24 日,俄罗斯联邦对乌克兰发动了大规模军事侵略,从隐蔽的混合战争发展到公开的战争。乌克兰发现自己处于全球最大、最极端的社会文化裂痕之一的中心。这项研究的目的是研究、分析和总结因果链,并概念化对 2014 年至 2022 年时间范围内俄乌战争性质的理解。我们认为有必要确定某个时间上限(2022 年)的可能变化。这项研究基于辩证法、比较法、国际法和系统方法。基本方法是:分析与综合、共时与历时、比较历史、历史法律和结构功能。事实证明,俄乌战争的先决条件源于苏联解体和现代独立乌克兰的最初几年。二十世纪末苏联帝国和共产主义集团的解体被莫斯科官方视为二十世纪最大的悲剧。俄罗斯总统弗拉基米尔·普京及其亲信并没有放弃恢复帝国结构和失去的地缘政治地位的想法,特别是将乌克兰重新置于克里姆林宫的统治之下。二十一世纪初,由于基辅和莫斯科对欧洲的态度不同,乌克兰与俄罗斯的关系变得尤为紧张,