在这项研究中,采用了创新的电氧化技术来创建基于石墨烯的前向渗透(FO)膜。这涉及在可伸缩的平板底物上构建聚乙二胺还原氧化石墨烯(PEI:RGO)层,该层用聚乙烯甘油 - 甘油 - 氧化物(3,4-乙烯 - 二羟基苯乙烯)官能化,可通过电苯甲酸酯(P:P:p:p:p:p:p:p:p:p:p)(p:p:p:p:p:p:p:p:p:p:p:p)。在10 V的优化电势下,我们成功地将PEI:RGO层压与P:P:P:P支持层相结合,导致高度多孔结构。与单面PEI:RGO膜(SS-PEI:RGO)相比,双面涂层PEI:RGO膜(DS-PEI:RGO)表现出色。ds-PEI:RGO显示出比SS-PEI:RGO(90.1%)的离子盐排斥更高(95%),但略低于实验室大规模的质量质量质量降低过程。有趣的是,与SS-PEI:RGO和CTA-FO膜(分别为0.017 g/L和2.549 g/L)相比,所得的DS-PEI:RGO膜表现出降低的特异性盐通量(0.014 g/L)。使用与藻酸钠的合成海水评估了PEI:RGO膜的防染色特性。在3.0 V DC电位下,与没有电场的膜相比,PEI:RGO膜的恢复通量增加了30%。这种改进归因于PEI:RGO和相对带电的离子之间的电氧化机制,以及PEI:RGO和P:P:P:P链形成的独特纳米复合结构,有助于增强的膜完整性。
沸石是微孔晶体,这些晶体是由四面体SiO 4和Alo 4物种通过共享O原子相互联系的,它们在吸附,分离,离子交换和异构固体阳性催化中表现出了显着的应用前景[1]。通常,通过异态替代物,可以将Si和Al原子框架的一部分取代,例如Ti,Sn,Ge,Zr,Zr,B,P,V和Ga,导致杂原子沸石或金属硅酸盐[2-4]。Among these heteroatomic zeolites, titanosilicate is the most representative one, and it can catalyze diverse selective oxidation reactions, such as alkene epoxidation, aldehyde or ketone ammoxidation, benzene or phenol hydroxylation, 1,4-dioxane oxidation, selective oxidation of pyridine derivatives, and oxidation desulfurization [5-9]以及酸催化的反应,例如环氧化物的铃声反应[10-12],乙二胺冷凝[13]和贝克曼的氧电[14](如图1.1所示)。此外,钛硅酸盐的发现扩大了沸石的应用范围,因为异质催化剂从酸催化到氧化还原场。几项评论和专着提出了对合成和催化应用中钛硅酸盐的机会和挑战[3-9,15-18]。如图1.2所示,从1983年到2023年,与钛质有关的年度出版物数量迅速增加,在过去的十年中,这一数字一直保持在200–350。值得注意的是,钛硅酸盐可以根据其质地性能和孔径分为微孔,介孔和静脉型类型。其中,具有孤立的四面体Ti物种的微孔钛硅酸盐具有尺寸<2 nm的毛孔,其中包括中小孔和中孔的钛硅酸盐沸石,带有8或10元的环(MR),12 MR大孔沸石,大孔沸石,超大型孔的杂物和超大型孔的Zeolites和≥14mms。在具有三个字母代码的255个订购的沸石框架结构和国际沸石协会结构委员会(IZA)认可的部分无序的沸石结构中,28个结构
科廷大学。*邮箱:科廷大学,GPO Box U1987,珀斯,澳大利亚 6845。电子邮件:F.Jones@curtin.edu.au 电话:618 9266 7677 摘要:本文介绍了三种有机分子(在有和没有锌离子的情况下)在更现实的溶液介质中的影响。尿液介质对形成的草酸钙一水合物形态的影响与在主要成分柠檬酸存在下所见的相似。形成的颗粒是相对扁平的圆形颗粒。在锌离子存在下,颗粒几乎没有变化,主要变化是颗粒更圆润。不同有机酸的存在对不同的有机物有不同的影响。乙二胺四乙酸与钙离子络合并降低过饱和度,正如螯合剂所预期的那样。它还会影响生长中的晶体,从而改变形态。对于酒石酸来说,吸附在关键核和/或生长特征上会导致掺入。最后,发现马来酸的影响最为复杂。马来酸与柠檬酸相互作用,抑制柠檬酸效应。这可以从粒子的形态与纯水中的形态相似中看出。锌离子的存在通常会导致 zeta 电位值更接近于零,因此会增加这些粒子凝结的倾向。 关键词:A1 生物结晶,A1 晶体形态,A1 杂质,A1 成核,A2 从溶液中生长,B1 钙化合物 简介:生物矿化是一个重要且普遍的过程,发生在日常生活中,例如骨骼[1]、牙齿[2]、海绵中的骨骼组织[3]、甲壳类动物[4]、蛋[5] 和软体动物壳[6]。通过研究这些自然系统,“仿生材料化学”旨在将新发现的方法应用于材料化学。[7] 因此,碳酸钙、草酸钙和磷酸钙等晶体系统尤为重要,因为它们是自然界中的生物矿物。[2,4,7] 自然界中,草酸钙在许多植物中含量丰富[8,9],以从无定形到水合形式的多种相存在。[10,11,12] 然而,并非所有的生物矿化都是可取的。 在人类中,草酸钙是一种具有重要医学意义的生物矿物,特别是对于尿石症[13]和肾结石的形成。[14,15] 这种不良疾病每代影响全球约 10% 的人口[16],预计在可预见的未来携带者的数量会增加。草酸钙在泌尿系统结石中非常重要,因为肾结石由草酸钙一水合物和二水合物(约 70%)的混合物组成,其中磷酸钙约占 8.9%,尿酸约占 10.1%,鸟粪石约占 9.3%,各种有机物约占 0.8%,胱氨酸约占 0.7%。[17] 肾结石的形成与肾结石的形成密切相关。
本期特刊旨在汇集高质量的论文,重点介绍各种可充电电池材料的最新发展,并重点介绍当今最重要和最有效的储能设备之一的科学和技术,即锂离子、锂硫、锂空气和钠离子电池。高性能电池技术被认为是通过大规模应用于电动汽车实现深度脱碳的关键因素。此外,通过大量关注推广可持续和可再生能源,可持续经济发展是可能的。这些间歇性能源系统的开发需要适当的储能方法,其中电池作为多功能储能设备发挥着重要作用。这些贡献提供了对一系列材料(电池的基本元素)的深入了解,其方法可以从纳米到宏观。在这些电池中,不仅阴极和阳极材料,而且其他组件(如电解质、添加剂和隔膜)在确定其能量密度、寿命、功率能力、安全性和成本方面也起着至关重要的作用。通过引入源于特殊形貌和结构、适宜的颗粒尺寸、表面工程、掺杂和复合形成等各种功能来设计和合成材料以获得稳定的电化学性能,人们对此给予了特别的关注。因此,对电池材料的广泛研究在生产未来可持续发展的先进可充电电池中发挥着越来越重要的作用。元素掺杂取代锂或氧位已成为提高层状正极材料电化学性能的一种简单有效的技术。与单一元素掺杂相比,Wang 等 [1] 在研究 Na + /F − 阳离子/阳极共掺杂对 LiNi 1/3 Mn 1/3 Co 1/3 O 2 的结构和电化学性能的影响方面做出了前所未有的贡献。三维和二维势图的第一性原理计算表明,Na 掺杂可以降低势阱并增加 Li + 离子的去除速率 [2]。采用溶胶-凝胶法,以乙二胺四乙酸 (EDTA) 为螯合剂,合成了共掺杂的 Li 1-z Na z Ni 1/3 Mn 1/3 Co 1/3 O 2-z F z (z = 0.025) 和纯 LiNi 1/3 Co 1/3 Mn 1/3 O 2 材料。结构分析表明,Na + 和 F − 掺杂剂分别成功掺入 Li 和 O 位。共掺杂使 Li 板间距更大、阳离子混合程度更低、表面结构更稳定,从而大大提高了正极材料的循环稳定性和倍率性能。Na/F 共掺杂电极在 1C 倍率下提供 142 mAh g −1 的初始比容量(0.1C 时为 178 mAh g −1),并且在 1C 倍率下经过 1000 次充电-放电循环后仍能保持其初始容量的 50%。Bubulinca 等人 [3] 对采用优化的无粘合剂技术制备的二元和三元自立复合正极材料进行了比较研究。使用聚(乙二醇)对异辛基苯基醚(Triton X-100)作为表面活性剂,制备了二元“岛桥”LiMn2O4/碳纳米管(LMO/CNT)复合材料和三元“构造板-岛桥”LiMn2O4/CNTs/石墨烯仿生结构。在
1. 伊朗阿瓦士 Jundishapur 医科大学健康研究所地中海贫血和血红蛋白病研究中心 2. 伊朗阿瓦士 Jundishapur 医科大学学生研究委员会 3. 伊朗阿瓦士 Jundishapur 医科大学公共卫生学院生物统计学和流行病学系 *通讯作者:Kaveh Jaseb 博士,伊朗阿瓦士 Jundishapur 医科大学健康研究所地中海贫血和血红蛋白病研究中心。电子邮件:kavehjaseb1400@gmail.com。ORCID ID:0000-0002-3216-9113。收到日期:2024 年 7 月 31 日 接受日期:2024 年 11 月 6 日 摘要背景:钙卫蛋白被认为是全身炎症的生物标志物,尤其是在自身免疫性疾病中。炎症是一个与恶性进展相关的过程,而钙卫蛋白是一些血液系统恶性肿瘤的潜在预后生物标志物。我们的初步研究旨在评估血浆钙卫蛋白水平作为儿童血液肿瘤复发/难治期有希望的生物标志物。材料和方法:这项初步研究是一项病例对照研究。研究共纳入 168 人。分析对象为伊朗阿瓦士沙法医院转诊的 73 名被诊断为急性白血病的儿科患者和 60 名患有实体瘤癌症的儿科患者。根据疾病的三个阶段将患者细分,包括治疗期、复发/难治期和缓解期。此外,35 名健康儿童被视为对照组。在征得所有参与者的同意后,将他们的血液样本采集到乙二胺四乙酸 (EDTA) 管中,通过酶联免疫吸附试验 (ELISA) 法测量血浆钙卫蛋白水平。使用 SPSS26 软件分析数据。使用 Kruskall-Wallis、Bonferroni Post hoc 和双变量相关性检验,双侧 p 值 < 0.05 为显著性差异。结果:急性白血病不同阶段的血浆钙卫蛋白水平没有统计学上的显著差异(P = 0.099);然而,研究组的平均水平高于健康对照组。与对照组相比,在实体瘤的不同阶段也观察到平均钙卫蛋白水平的增加。此外,与对照组相比,治疗组和缓解组之间存在显著差异(分别为 p = 0.011 和 p = 0.016)。结论:部分儿童血液肿瘤恶性肿瘤不同阶段血浆钙卫蛋白平均水平升高,但不能作为复发/难治期的特异性生物标志物。关键词:生物标志物,白血病,S100A8蛋白,S100A9蛋白,S100蛋白简介钙卫蛋白是S100蛋白家族中的一种报警素,在炎症反应中起关键作用,并参与各种细胞过程,特别是免疫调节 (1)。钙卫蛋白由两个亚基组成,即 S100A8 和 S100A9,存在于髓系细胞的细胞质中,尤其是中性粒细胞、单核细胞和巨噬细胞 (2)。
目的:通过参考材料(RM)8366传递的值旨在将人类表皮生长因子基因(EGFR)和人类MET原始癌基因,受体酪氨酸激酶基因(MET)与未扩增的参考基因的比率进行协调。注意:有关可识别私人信息的“使用和隐私协议”,请参见第2页。eGFR基因扩增和相关的蛋白质表达增加并与许多人类恶性肿瘤的发病机理有关。在几种类型的癌症中,EGFR基因的扩增(增加)和蛋白质过表达被用作确定治疗治疗的生物标志物,并预测响应抗EGFR靶向治疗的临床结果[1]。MET基因扩增,导致蛋白质表达增加和MET受体的组成性激活。进行了各种临床试验,以评估癌症患者选择性MET抑制剂的安全性和功效。但是,对MET水平的准确评估仍然是一个挑战[2]。rm 8366由从六个人类癌细胞系中提取的基因组DNA组成,这些人类癌细胞系具有不同量的EGFR和MET基因。六个纯化的基因组DNA在缓冲液中,由10 mmol/L 2-Amino-2-(羟甲基)丙烷-1,3-二醇(TRIS)和0.1 mmol/L乙二胺二苯甲酸乙酸乙酸disodium disodium sal(EDTA)pH 8.0(TE -4)(TE -4)。描述:RM的一个单位由每个组件的一个小瓶组成,其中包含大约100μl的DNA溶液。六个成分是源自人类细胞系A-431,BT-20,C32,Daoy,HS 746T和SNU-5的基因组DNA材料,分别标记为A,B,C,C,D,E和F。在准备稀释液时,请考虑单个组件中的EGFR和MET放大的水平,以确保EGFR和MET拷贝数在您使用的测定的工作范围内。这些小瓶中的每一个都被标记,并用颜色编码的螺钉盖密封。未认证的值:未认证的值适合用于方法开发,方法协调和过程控制,但不为国际单位系统(SI)或其他高阶参考系统提供计量学可追溯性[3]。在表1和2中显示了95%可靠间隔和95%预测间隔的EGFR和MET副本比例的非认证值。附加信息:EGFR,MET和每个微层的基因副本的潜在兴趣值;附录A中提供了其他信息。有效期:未认证的值在指定的测量不确定性中有效,直到2027年12月31日。如果材料存储或使用不当,损坏,污染或其他修改,则值分配将无效。维护未认证的值:NIST将监视此材料的有效期结束。如果发生了实质性的技术变化,影响了此期间未认证的值,NIST将更新此参考材料信息表并通知注册用户。注册将有助于通知。RM用户可以从NIST SRM网站上可用的链接在线注册,也可以填写用RM提供的用户注册表格。在使用该材料交付的任何值之前,用户应验证其具有此文档的最新版本,可通过NIST SRM网站(https://www.nist.gov/srm)获得。
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。
