凝聚微孔网络在气体和能量存储、传感和催化应用方面受到了广泛关注。1 9,9'-螺二芴基序对电子应用尤其重要,2,3 也已成为一种流行的结构单元,可作为扭曲位点来创建具有内在微孔性的材料。4-23 Yamamoto 将易得的 2,2',7,7'-四溴-9,9'-螺二芴与 Ni(COD) 2 偶联,可产生非常高表面积的微孔网络,并且在类似条件下与刚性二溴化芳香支柱进行共聚,可为材料提供可调的光学和气体吸附性能。24,25 其他方法也从 2,2',7,7'-四溴-9,9'-螺二芴试剂开始产生了均聚物或共聚物网络。目前对基于 9,9'-螺二芴更四面体导向的 3,3',6,6' 位聚合的缩合网络的探索相对较少,这可能是由于在 3,3',6,6' 位选择性卤化固有的挑战性所致。最近在 3,3',6,6' 位选择性卤化的一项策略是先在 2,2',7,7' 位进行初始甲氧基化,然后与 I 2 /PIFA 反应,得到 2,2',7,7'-四碘-3,3'6,6'-四甲氧基-9,9'-螺二芴前体。26 对该前体的进一步修饰产生了核碱基修饰的四足体。 27 随后,四炔通过 Sonogashira 和乙炔偶联反应聚合,生成螺二芴骨架,可作为 Pd 和 Pt 催化氢化的载体。28 3,3',6,6'-
在Denka,可持续性是我们管理的核心,从环境,社会和治理(ESG)的角度来看,我们认为我们的使命有助于保护全球环境并实现社会的可持续发展。 更具体地说,我们旨在在2050财年之前达到碳中立性,保护环境并促进环境利用资源,并在我们的管理计划“ Mission 2030”中明确规定了实现这些目标的努力。我们宣布了我们在2020财年2050财年之前实现碳中立性的政策,还将新的临时减少目标设定为60%(从2013财年的排放水平),到2030财年,2023财年。。在Denka,可持续性是我们管理的核心,从环境,社会和治理(ESG)的角度来看,我们认为我们的使命有助于保护全球环境并实现社会的可持续发展。更具体地说,我们旨在在2050财年之前达到碳中立性,保护环境并促进环境利用资源,并在我们的管理计划“ Mission 2030”中明确规定了实现这些目标的努力。我们宣布了我们在2020财年2050财年之前实现碳中立性的政策,还将新的临时减少目标设定为60%(从2013财年的排放水平),到2030财年,2023财年。为了实现这些目标,我们将强烈促进诸如与排放,促进节能以及更广泛使用可再生能源直接相关的技术发展和采用技术的措施。作为这样一项倡议,我们已经开始考虑采用新技术来生产乙炔,以减少非能源衍生的CO 2排放。denka还采用了减少浪费,保护自然资源并为循环经济做出贡献的目标。为了减少浪费,我们正在努力优化制造过程,回收材料和设计产品,以延长使用寿命。在
Heeger,MacDiarmid和Shirakawa等人发现导电聚乙炔。在1977年开设了一个新时代,这使他们因“导电聚合物的发现和开发”而获得了2000年诺贝尔化学奖。[1]在1987年,Tang和Vanslyke报告了砂含量的电致发光装置结构,代表了有机电子领域的里程碑。[2]在1990年,朋友,福尔摩斯,布拉德利及其来自剑桥大学的梅尔维尔实验室和梅尔维尔实验室的同事开发了其基于聚合物的电动发光设备,该设备被广泛认为是打开塑料电子设备的门。[3]从那时起,基于导电聚合物的有机发光二极管(OLED),有机光伏(OPV),有机场效应晶体效应(OFET)和有机固态激光器(OSSL)的技术一直非常迅速地推动。随着大量信息电子设备的灵活性,灵活的电子设备已成为现实。在过去的十年中,灵活的电子研究经历了快速增长,这也是由便携式和可穿戴仪器的功能驱动的。灵活的电子设备是一种猖ramp的技术发明,可重新使用软电介电和导电材料,它由于其出色的光电特性,例如电导率,opti-cal吸光度和载体和载体运输以及有吸引力的机械性能,包括灵活性,不良能力和溶液的制造,因此鼓励使用聚合物。核心组件的柔性设计在开发柔性电子设备方面起着至关重要的作用。灵活的电子设备被认为是基于开拓和跨学科研究的破坏性技术,它可以破坏基于经典硅电子产品的内在局限性。这可以为Ingration设计,能源革命,医疗技术变化开放创新的前景,从而为未来通过自我依赖的创新提供了重要的机会。柔性电子产品的优越性首先归因于对电子元素的性能的最终追求。灵活电子设备的关注问题通常是最佳光电特性和设备灵活性之间的权衡。出于织物的目的 - 高性能有机柔性设备,已经探索了不同的方法,主要集中在以下四个方面:a)内在灵活的有机成分(半导体,电极,绝缘体和底座),b)设备工程,c)c) - c)构造的构造技术和d)。具有内在灵活性的聚体用于构建灵活性
摘要:在成年啮齿动物中,空间学习可增加海马齿状回的神经发生。此前,啮齿动物大脑中另一个主要的神经发生区,即脑室下区 (SVZ),尚未发现类似的效应。尽管大多数 SVZ 产生的神经元会前往嗅球,但一小部分神经元会横向迁移到纹状体。考虑到纹状体在运动学习中的作用,我们想知道运动学习是否会增加成年 SVZ 神经发生。为了验证这一假设,成年雄性 C57Bl/6 小鼠接受了转棒训练,并注射了 5-乙炔基-2'-脱氧尿苷 (EdU) 来标记分裂细胞。使用了两个对照组:模拟训练小鼠静止坐在静止的转棒上,而幼稚小鼠则留在笼子里。在任务完成后 1、7 和 30 天收集大脑,并用 EdU、双皮质素 (DCX) 和 NeuN 进行免疫组织化学处理,以定量分析不同时间点的神经元增殖和存活情况。FACS 对 EdU 标记的细胞核进行分选作为次要测量。我们发现运动学习会增加 SVZ 神经发生,任务完成后一天,与模拟训练小鼠相比,转棒小鼠的 EdU+ 细胞增加了 1.4 倍,总 EdU 强度增加了 1.8 倍。重要的是,一组使用跑步机代替转棒的对照实验表明,在排除运动作为混杂因素的情况下,跑步小鼠和静止小鼠的 SVZ EdU 标记没有差异。转棒小鼠和模拟训练小鼠的 SVZ 中的 DCX 表达最初升高了 1.7 倍,但 7 天后在模拟训练小鼠中恢复到基线水平,而在转棒训练小鼠中仍保持较高水平。这些结果表明,学习诱导的神经发生会在运动训练后的一周内持续进行。转棒训练任务的影响在纹状体中也持续存在一段时间。在训练后 7 天和 30 天,转棒训练小鼠的纹状体 EdU+ 细胞更加丰富。此外,在训练后 7 天,纹状体中存在迁移的 EdU+ / DCX+ 神经元,尽管很少见,但在训练后 30 天仍可识别出存活的纹状体 EdU+ / NeuN+ 神经元。总体而言,这些结果证明了运动学习在成年啮齿动物 SVZ 中的神经发生影响,并表明运动学习可能会驱动未成熟神经元迁移到纹状体。
1物理部,政府理工学院,Sorab-577426,印度卡纳塔克邦2物理学2,斯里尼瓦萨大学,斯里尼瓦萨大学,穆克卡,穆克卡,芒格洛尔,卡纳塔克州,印度,印度,印度卡纳塔克州,作者的作者。 Ferdinand Runge于1834年首次发现。PANI金属氧化物复合材料可以在酸性培养基中使用化学和电化学氧化聚合合成。苯胺化学聚合使用最广泛使用的启动器或氧化剂。合成的PANI复合材料对XRD进行了XRD,以了解结构修饰。紫外可见的研究表明,光学特性和介电研究显示了掺杂剂的电导率变化。关键字:导电聚合物,纳米复合材料,XRD 1。介绍数十年来,科学和研究的世界被导电聚合物的非凡电气和电子特性所吸引。这些奇迹材料,也称为本质上导电聚合物(ICP),无视塑料等传统绝缘子设定的期望。与它们的绝缘型物体不同,ICP具有出色的传导能力,其行为类似于金属或半导体[1]。这增强了各种领域的潜在应用。导电聚合物的电导率是一个频谱,涵盖了从半导体到金属的范围。这取决于特定的聚合物及其掺杂水平。进行聚合物的处理可能性与其性质一样多样化。兴奋剂是涉及将电子供体或受体引入聚合物链中的过程,它是微调这些材料的电气,光学甚至机械性能的魔术旋钮。从膜和纤维到管,这些多功能材料可以使用化学合成,电化学聚合和旋转涂层等技术制成各种形式[2-3]。这为它们集成到广泛的应用中,尤其是在灵活电子产品领域中打开了大门。在大量的ICP,聚乙炔(PA),多吡咯(PPY),聚噻吩(PTH)和聚苯胺(PANI)中,这些名称经常宽容研究论文并对未来持巨大希望。他们可以彻底改变诸如储能,太阳能电池,微电器设备,传感器甚至光电小工具等区域。聚苯胺(PANI)自1980年代以来,半硬杆聚合物以其出色的电导率和令人印象深刻的机械性能吸引了研究人员[4-5]。当用酸或其他药物掺杂时,其导电性能可用于电子应用。取决于所选的掺杂剂和氧化状态,可以调整其电导率甚至颜色,使其准备适应各种需求。与其同伴ICP相比,Pani拥有额外的魅力 - 其弹性。它对温度和光等环境因素表现出令人钦佩的抵抗力,使其成为现实世界应用的实用选择[6-7]。
固氮酶催化 N2 还原为铵 (1)。固氮酶由两种蛋白质组成,即二氮酶 (组分 I,Mo-Fe 蛋白) 和二氮酶还原酶 (组分 II,Fe 蛋白) (1, 3)。二氮酶含有一个独特的辅基,即铁钼辅因子 (FeMo-co),由 Fe、Mo 和 S (15) 组成。生化和遗传研究表明,至少有六种 nif (固氮) 基因产物参与了 FeMo-co 的生物合成。含有 nifB、nifN 或 nifE 突变的肺炎克雷伯菌菌株无法合成 FeMo-co (12, 15)。在含有低水平钼酸盐的培养基中,当固氮酶被解除抑制时,nifQ 突变的菌株不会合成 FeMo-co (8)。某些含有 nifH(编码二氮酶还原酶)突变的肺炎克雷伯菌和棕色固氮菌菌株无法积累 FeMo-co(2, 13)。从含有 nifV 突变的肺炎克雷伯菌菌株中分离出的二氮酶表现出改变的底物亲和力和抑制剂敏感性(10)。进一步的研究表明,NifV 突变体在 FeMo-co 合成方面存在缺陷(4)。最近,描述了一种体外合成 FeMo-co 的系统,该系统需要 ATP、钼酸盐、nifB、nifN 和 nifE 的基因产物(17)、二氮酶还原酶(未发表的数据)和同型柠檬酸(6)。肺炎克雷伯菌对同型柠檬酸的积累与功能性 nifV 基因的存在有关,该基因显然编码同型柠檬酸合酶(7)。在解除固氮酶抑制期间,发现高柠檬酸在肺炎克雷伯氏菌培养物培养基中积累 (6)。我们在此报告,向肺炎克雷伯氏菌 NifV 突变体培养基中添加高柠檬酸可治愈该表型。肺炎克雷伯氏菌 UN 是从菌株 M5al 中重新分离的野生型菌株,该菌株最初来自 PW Wilson 的收藏。菌株 UN1991 (nifV4945) 是一种稳定的 NifV 突变体,回复频率为 3 x 10-10(T. MacNeil,博士论文,威斯康星大学麦迪逊分校,1978 年),之前已有描述 (9)。肺炎克雷伯氏菌突变体中的生长和固氮酶解除抑制已被描述 (8)。从肺炎克雷伯菌 (6) 培养物的去阻遏培养基中分离出 (R)-2-羟基-1,2,4-丁烷三羧酸 (高柠檬酸)。将高柠檬酸添加到 UN1991 培养物中,最终浓度约为 83 mg * 升-' (0.4 mM)。用 DEAE-纤维素色谱法 (14) 从菌株 UN、UN1991 和 UN1991 中纯化二氮酶,这些菌株在高柠檬酸存在下已对固氮酶进行了去阻遏。已描述了乙炔和 N2 还原测定
