易燃性是影响聚合物基质复合材料(PMC)的主要缺点之一,在几种应用中限制了金属替代品。磷化合物表现出很大的能力来对比燃烧散布。在这里,已合成并用作碳纤维增强聚合物(CFRP)层压板的磷酸化聚(乙烯基醇)(PPVA)(PPVA)。通过光谱(NMR和IR)和热(TGA和DSC)分析研究了磷酸化度高达7.5%wt的合成PPVA。此外,通过应用差分和Tegrals方法,将热降解动力学合理化了:磷催化效应与从燃烧过程中开发的磷物种产生的自由基耦合行为结合在一起,从而突显了PPVA的抑制剂作用。锥形 - 滤光度测试,模拟小型火灾情况,是通过溶剂铸造制成的聚乙烯醇(乙烯基醇)和PPVA涂层的材料进行的。结果突出了PPVA的抗晶状特性,尤其是作为有效的火焰抑制剂:火焰时期(TOF)时高达-58%。相反,聚(乙烯基醇)涂层导致材料火行为的总体恶化,突出了磷降低易燃性的关键作用。这种有希望的结果为使用PPVA涂料降低易燃复合材料的火风险铺平了道路。
开发乙烯基共价有机框架V-COF-1与肿胀相互作用作为微型分散固相萃取吸附剂,用于通过气相色谱质谱法chih-ling yeh,fu jen天主教大学
[2] B. Chaudhuri,G。Sardar,MD。Masud,J Uddin,B。K。Chaudhuri和K. Pramanik。 观察聚乙烯醇/聚乙烯基吡咯烷酮混合 - 羟基磷灰石和氧化石墨烯复合材料中的电导率和介电常数;使用人脐带血干细胞的生物相容性研究。 proc。 int。 聚合物科学技术研讨会,加尔各答(1月23-26日)P-522,PB10(2015)。Masud,J Uddin,B。K。Chaudhuri和K. Pramanik。观察聚乙烯醇/聚乙烯基吡咯烷酮混合 - 羟基磷灰石和氧化石墨烯复合材料中的电导率和介电常数;使用人脐带血干细胞的生物相容性研究。proc。int。聚合物科学技术研讨会,加尔各答(1月23-26日)P-522,PB10(2015)。
摘要 识别和量化 1,3-丁二烯中的痕量杂质对于生产高质量的合成橡胶产品至关重要。标准分析方法采用氧化铝 PLOT 柱,该柱对低分子量烃具有良好的分辨率,但对极性烃具有不可重复性和较差的灵敏度。在本研究中,Rt®-氧化铝 BOND/MAPD PLOT 柱用于分离常见的轻极性污染物(包括甲基乙炔和丙二烯)以及 4-乙烯基环己烯(这是一种高分子量杂质,通常需要在另一根色谱柱上进行第二次测试)。通过使用采用色谱柱整个温度范围的扩展温度程序,可以在一次测试中分析 4-乙烯基环己烯以及 1,3-丁二烯中所有典型的低分子量杂质。
摘要:基于纳米载体的药物输送系统的开发是药理学,有希望的靶向递送和药物毒性降低的主要突破。在细胞水平上,药物的封装显着影响纳米载体 - 膜相互作用引起的内吞过程。在这项研究中,我们合成并表征了由N-乙烯基-2-吡咯酮的两亲寡聚组组装的纳米载体,并与末端硫代二烷基(PVP-OD)组成。发现PVP-OD的溶解自由能线性地取决于其亲水性部分的分子质量至M n = 2×10 4,从而导致临界聚集浓度(CAC)对摩尔质量的指数依赖性。将一种模型疏水化合物(DII染料)加载到纳米载体中,并以18小时的比例表现出缓慢的释放到水相中。使用胶质母细胞瘤(U87)和纤维细胞(CRL2429)细胞比较了负载的纳米载体和游离DII的细胞摄取。尽管DIV> DII/PVP-OD纳米载体和自由DII均被Dynasore抑制,这表明在存在Wertmannin的情况下观察到了自由DII的摄取率的降低。这表明,虽然巨细胞增多症在摄取低分子成分中起作用,但通过将DII掺入纳米载体中可以避免这种途径。
在本文中,Sam A. Masih的隶属详细信息被错误地作为“分子和细胞工程系,Higginbottom农业大学,技术与科学大学,印度Prayagraj 211007,印度Prayagraj 211007”,但应该是分子和细胞工程学系” 211007,印度。原始文章已得到纠正。
挤出式高压电力电缆最常见的绝缘材料由低密度聚乙烯 (LDPE) 组成,必须进行交联才能调整其热机械性能。一个主要缺点是需要危险的固化剂,并且在电缆生产过程中会释放有害的固化副产物,而热固性使绝缘材料的再加工变得复杂。本观点探讨了替代概念开发的最新进展,这些概念允许通过点击化学型固化聚乙烯基共聚物或使用聚烯烃共混物或共聚物来避免副产物,从而完全消除了交联的需要。此外,聚丙烯基热塑性配方使设计绝缘材料成为可能,这些绝缘材料可以承受更高的电缆工作温度,并且在电缆达到使用寿命后通过重新熔化来促进再加工。最后,探索了聚乙烯基共价和非共价适应性网络,这可能允许结合热固性和热塑性绝缘材料在热机械性能和可再加工性方面的优势。
Carbopol ® 971P NF 聚合物 卡波姆均聚物 A 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 974P NF 聚合物 卡波姆均聚物 B 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 980 NF 聚合物 卡波姆均聚物 C 型 卡波姆 羧基乙烯基聚合物 Carbopol ® 5984 EP 聚合物 卡波姆均聚物 B 型 卡波姆 羧基乙烯基聚合物 Carbopol ® ETD 2020 NF 聚合物 卡波姆互聚物 B 型 --- --- Carbopol ® Ultrez 10 NF 聚合物 卡波姆互聚物 A 型 --- --- * 2006 年之后的 USP/NF Carbopol ® 聚合物分散体的 Brookfield 粘度 必须中和 Carbopol ® 聚合物才能达到最大粘度。在分散体中加入中和剂后,会逐渐变稠。最大粘度通常在 pH 值为 6.0 - 7.0 时达到。当 pH 值为 9.0 或更高时,Carbopol ® 聚合物的粘度将开始下降。这是由于存在过量电解质,它们会影响离子化羧基的静电排斥。为了在 pH 值低于 5 和高于 9 时获得高粘度,建议增加 Carbopol ® 聚合物的浓度。此外,应避免在低 pH 值下使用低浓度的聚合物,以实现稳定的配方。对浓度为 0.2 - 2.0 wt. % 的几种 Carbopol ® 聚合物的水分散体进行了布鲁克菲尔德粘度测量。图 2 - 7 显示了每种聚合物的一般行为,基于每种聚合物一批的数据。分散体在制备时(通常表示为 pH 3.0)或在用氢氧化钠溶液中和至 pH 4.0 - 7.0 后进行测试。聚合物浓度增加会导致粘度增加。一般而言,Carbopol ® 聚合物浓度越高,pH 值越容易达到稳定状态。图 2:pH 值和浓度对 Carbopol ® 971P NF 聚合物分散体粘度的影响
先前使用氢水合物通过化学还原获得的RGO的抽象功能化是通过使用静电纺丝技术将其形态转换为纳米纤维的,并将PVA用作聚合物基质。然后使用傅立叶变换红色(FTIR)光谱,扫描电子显微镜(SEM)和UV-VIS分光光度计表征了已形成的RGO纳米纤维。FTIR光谱证实了纳米纤维中C组和C = O组的存在。sem显示了纳米纤维形态的变化,这标志着纤维直径的增加,而空心纤维变得更亮。此外,通过UV-VIS分光光度计证实了RGO浓度对纳米纤维光学特性的影响。根据此特征,由于RGO浓度升高,RGO/PVA纳米纤维的吸光度降低。通过复杂的折射率和介电常数研究了RGO的光学性质的细节,然后使用Kramers-Kronig转换来计算复杂的折射率和复杂的介电常数。从数据中,RGO/PVA纳米纤维的光学性质表明RGO/PVA纳米纤维可以用作有机太阳能电池设备的透明电极。关键字:减少石墨烯氧化石墨烯,纳米纤维,静电纺丝,kramers-kronig,