摘要 本研究利用CRISPR/Cas9核糖核蛋白(RNP)复合体系统对康乃馨乙烯(ET)生物合成基因[1-氨基环丙烷-1-羧酸(ACC)合成酶1(ACS1)和ACC氧化酶1(ACO1)]进行编辑。首先,验证靶基因(ACS1和ACO1)的保守区域,以生成不同的单向导RNA(sgRNA),然后使用体外切割试验验证sgRNA特异性切割靶基因的能力。体外切割试验表明,sgRNA在切割各自的靶区域方面具有很高的效率。将sgRNA:Cas9复合物直接递送到康乃馨原生质体中,并对原生质体中的靶基因进行深度测序。结果表明,sgRNA 适用于编辑 ET 生物合成基因,因为 ACO1 的突变频率范围为 8.8% 至 10.8%,ACS1 的突变频率范围为 0.2–58.5%。在对用 sgRNA:Cas9 转化的原生质体产生的愈伤组织中的目标基因进行测序时,在 ACO1 中发现了不同的 indel 模式(+ 1、- 1 和 - 8 bp),在 ACS1 中发现了不同的 indel 模式(- 1、+ 1 和 + 11)。这项研究强调了 CRISPR/Cas9 RNP 复合物系统在促进康乃馨 ET 生物合成的精确基因编辑方面的潜在应用。关键词 愈伤组织,CRISPR/Cas9,乙烯生物合成基因,Indel 模式,体外裂解,原生质体
在化学工业中广泛用于: - 聚乙烯生产,它是最广泛的塑料,并且消耗了一半的世界乙烯供应; - 氧化乙烷,用于生产表面活性剂,洗涤剂和乙二醇; - 乙烯苯,这是聚苯乙烯的前体; - 二氯化乙烯等。
果实作为被子植物特有的器官,为人类提供丰富的膳食纤维、维生素等营养物质,是健康膳食结构的重要组成部分(Giovannoni,2001;Chen et al.,2020)。果实成熟是果实食用品质形成的关键时期,是一个涉及果实质地变化、色素积累、香气和风味物质形成、抗性降低等性状的复杂发育过程,受诸多内外部因素的调控(Giovannoni,2004;Ji and Wang,2023)。内外部因素主要有转录因子和激素等,外外部因素主要有各种生物因素和非生物因素。根据呼吸模式的不同,果实可分为跃变型和非跃变型两类(Mcmurchie et al.,1972)。在果实成熟过程中,呼吸强度和乙烯释放量出现伴随爆发,如番茄、苹果和香蕉等,而非呼吸强度和乙烯释放量变化不显著,如草莓、葡萄、柑橘等( Shinozaki et al.,2018 )。乙烯生物合成的两个系统(系统I和系统II)在果实发育和成熟过程中起着至关重要的作用。未成熟的果实和植物其他器官持续产生低浓度的乙烯,即乙烯背景浓度。系统I乙烯以负反馈方式调节背景浓度的乙烯合成并参与果实发育,系统II乙烯以负反馈方式产生。
广泛使用的能源——锂离子电池——的基本成分是电解质,电解质通常是非水有机溶剂 [1]。电解质的液态及其特性(例如易燃性)会对电池的尺寸和重量产生负面影响,在数字化、小型化和移动性不断提高的时代,这些因素必须得到改善。此外,电池中使用的碱金属和有机溶剂对水分和氧气敏感,这会严重影响使用安全性,因为存在着火甚至爆炸的风险 [2]。例如,这些缺点会影响电动汽车,因为电池占汽车质量和体积的很大一部分 [3]。使用聚合物基电解质对于解决环境问题至关重要。消除液态易燃成分是使使用聚合物的能源解决方案更加友好的一种方法。改进的目的是开发适合能量密度和安全性的固态电池,以用于下一代智能、安全、高性能的环保电池。锂离子技术的进步还在于使用可生物降解的聚合物,如壳聚糖、淀粉、甲基纤维素和葡聚糖,并取得令人满意的电气性能测试结果,从而促进废旧电池部件的废物管理过程
摘要:聚合物膜的渗透性和反应性与用于货物输送的聚合物体的设计绝对相关。因此,我们在此将阿霉素负载(dox负载)的无反应性和刺激反应性聚合物的结构特征,渗透性和反应性与其体外和体内抗肿瘤性能相关联。聚合物囊泡(PHPMA),与聚[N-(4-异丙基苯甲酰胺)乙基酰胺乙基甲基甲基甲基酯(甲基甲基甲基酯)(Pppha)(Pppha)(pppha)(pppha)(pppha)(pppa),非pphha,nonnon block,nonnon block) poly [4-(4,4,5,5-甲基-1,3,2-二甲苯甲基-2- Yl)甲基丙烯酸酯] [Pbape,反应性氧(ROS) - 响应型块]或Poly [2-(二异丙基氨基)乙酰乙烯乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙酯](Pdpa)(pdpa),pdpa,ph-ph-block)。与抗肿瘤活性相比,基于PDPA的聚合体表现出出色的生物学性能,其抗肿瘤活性显着增强。,我们将这种行为归因于酸性肿瘤环境中快速触发的DOX释放,这是由pH响应性多聚合体拆卸pH <6.8所引起的。可能,所选肿瘤模型的ROS浓度不足会削弱Ros响应囊泡降解的速率,而PPPHA块的无反应性质显着影响这种潜在的纳米甲酶的性能。
3)使用CO 2用作资源来生产乙烯的超级环细菌的构建,使用合成生物学'与S. Jindou副教授,Ph。D.,Meijo University的科学技术学院的关键字;蓝细菌,二氧化碳,生物乙烯
纳米材料提供解决农业后损失问题的解决方案。Slintec提供带有嵌入式纳米颗粒的活性包装材料,以减少农业收获后的损失。Slintec乙烯吸收袋降解乙烯并增加易腐物的保质期。
乙烯和丙烯之间的生产比取决于所使用的催化剂,反应条件和技术。上面的两个反应步骤都出现在催化流动型反应器中。通过不必要的反应形成的可乐会随着时间的推移积聚在催化剂中,这可以降低其性能。因此,将催化剂的一部分从反应器连续移至再生单元。借助于再生反应器中的空气或氧气从催化剂中取出焦炭。反应产生的丙烯与乙烯之间的比率也可以通过操作条件来调整:范围为1.3至1.8。将转换反应器的产品流喂入分离部分,以去除水并恢复未反应的DME。富含烯烃的流被定向到分馏部分,其中所需的产物乙烯和丙烯被回收。残留气体和由介质沸腾的烃组成的流也在分离部分中回收。来自分离截面的碳氢化合物混合物被送入裂纹反应器,为乙烯和丙烯产生提供了另一种来源。开裂产物富含烯烃,该烯烃被发送到分离部分以回收乙烯和丙烯。裂纹部分的副产品是C4烯烃(图片中的“高沸点烃”)的混合物(Jasper,S。,El-Halwagi,M。M. M,2015年)。