目前,乙烯主要通过碳氢化合物的石油化学热解生产,这一工业过程会引入乙炔杂质,从而限制所生产乙烯的直接使用。因此,在工业上,必须首先将乙烯从乙炔中提纯出来,而这一转化过程目前在可持续性方面存在重大问题,因为它需要高温和昂贵且难以找到的贵金属作为催化剂。尽管取得了进展,但这些传统的乙炔转化为乙烯的策略仍然具有相对较低的选择性(即乙炔不仅转化为所需的乙烯,而且其中一些还转化为不需要的产物)。
如今,已经为广泛的应用开发了不同类型的能量收割机,其中有压电能量收割机在可穿戴电子产品中显示出很大的潜力,因为它们能够从机械振动或变形等环境来源收集能量。由于提高了效率,灵活性和生物相容性,目前的技术正在利用压电聚合物。在这个项目中,一种简单的方法,即滴铸件,用于制备基于聚(氟化氟化物 - 三氟乙烯)(p(vdf-trfe))的能量收割机。碳酸盐溶剂用于有效地制定P(VDF-TRFE)粉末的稳定墨水。退火和电晕螺栓以增强压电性能。在不同的力和电阻下测量了压电设备的机电性能。带有铂的压电设备,因为顶部电极分别产生高达3.8 V和0.025 µW cm -2的电压和功率密度。结果表明,基于P(VDF-TRFE)基于P(VDF-TRFE)的未来有希望的未来,以柔性,自供电和可穿戴的电子应用中的压电能量收集设备。
摘要:聚合物废物目前是全球一个巨大而充满挑战的问题。废物轮胎是聚合物废物的重要来源。因此,从废物轮胎中回收功能填充物来为高级应用开发复合材料是非常需要的。本综述的主要主题涉及使用回收轮胎作为填充物的材料开发聚苯乙烯(PS)复合材料的概述;废轮胎轮胎回收在地面轮胎橡胶,碳黑色和纺织纤维方面;填充剂的表面处理以优化各种复合特性;以及PS复合材料的机械性,火力阻滞,声学和电磁场(EMI)屏蔽性能。从聚苯乙烯和再生废物轮胎中开发复合材料,为实现碳排放目标和闭环塑料回收的减少提供了新的途径,这对循环经济学和环保社会的发展至关重要。
我们非常荣幸地向您呈现《宾夕法尼亚大学生物伦理学杂志》第 XX 卷第 1 期,题为“重温旧事,探索新事物”。在我们杂志的整个生命周期中,我们有幸发表了来自全国各地的广泛主题的文章。自《宾夕法尼亚大学生物伦理学杂志》创刊以来,一些道德困境经常被重新审视,每次都从新颖的角度进行探索,而其他一些困境则随着时间的推移而出现,反映了我们不断变化的世界。在本期中,我们将前沿研究与既定的医疗实践相结合。通过这样做,我们希望为围绕健康和医疗保健服务的持续对话增添细微差别,运用生物伦理学推动更美好、更光明的未来。第一篇文章“激励筛查乳房 X 线照片:付费还是不付费”讨论了乳房 X 线照片作为筛查程序在最近推动激励计划的背景下的重要性。大峡谷州立大学的作者 Erica Wiencek 将对当前事态的有力分析与她自己作为诊断医学超声医师的经验相结合。第二篇文章《心灵隐私:读心 AI 的伦理和监管影响》探讨了 AI 的热点问题以及如何使用这项技术来解读他人的想法。作者 Kerissa Duliga(东北大学)概述了读心技术的发展,并讨论了目前缺乏 AI 监管,尤其是与读心能力相关的监管。第三篇文章《尿液好手:肾脏市场合法化》探讨了用合法肾脏市场补充器官移植过程的利弊。作者 Sriya Bandi(芝加哥大学)谨慎地处理了这个敏感话题,将生物伦理分析与对健康的社会决定因素的考虑相结合。我们的“生物伦理简讯”部分涵盖了生物伦理和健康领域的当前事件。在第一篇简讯中,Manav Parikh 讨论了全国和国际禁止生殖系基因组编辑的可行性和使用情况。在第二篇简报中,Ashrit Challa 采用生物伦理学方法探讨食品可及性和安全性概念,这些主题通常仅从卫生政策角度进行探讨。在反思联合国题为“2024 年世界粮食安全和营养状况”的报告时,本简报旨在将全球健康概念的食品正义与核心生物伦理原则的正义联系起来。我们要感谢我们的出版商 Claire Jun 和出色的编辑团队,没有他们,本期杂志就不可能问世。此外,还要特别感谢我们的教师顾问 Harald Schmidt 博士在整个编辑和出版过程中的支持。我们希望您喜欢这期宾夕法尼亚大学生物伦理学杂志,并激励您进一步参与生物伦理学领域。如有任何问题、意见,请联系我们。或通过 pbjeditorinchief@gmail.com 提出合作想法。最后,“重温旧事,探索新事物”标志着 Penn Bioethics Journal 出版了第 20 卷!自 2005 年春季出版第一本题为“大脑及其他……”的出版物以来,我们的编辑团队已大大壮大,这让我们能够扩大期刊的影响力。我们很荣幸能与多元化的作者和读者群体分享我们对生物伦理学的热情,我们期待 Penn Bioethics Journal 的未来!
摘要:在废水和城市河流中,曲霉科细菌富含多聚(乙二醇)(PET)微塑料,但宠物降级机制仍不清楚。在这里,我们通过结合显微镜,光谱,蛋白质组学,蛋白质建模和遗传工程来调查了废水分离株的comamonas testosteroni kf-1。与宠物膜上的较小凹痕相比,扫描电子显微镜显示出明显的宠物颗粒,导致30天培养中的小纳米颗粒(<100 nm)的丰度增加了3.5倍。红外光谱法主要捕获了碎片颗粒中的水解裂解。溶液分析进一步证明了PET低聚物BIS(2-羟基乙基)苯二甲酸酯的双重水解为生物可用的单体terephathathate。补充乙酸盐,一种常见的废水共覆盖物,促进了细胞生长和宠物碎片。仅检测到一种,仅检测到一种,这在仅乙酸盐和仅宠物的条件下发现。该水解酶结构的同源性建模说明了尽管序列不同,但类似于报道的PET水解酶的底物结合。缺乏该水解酶基因的突变体无能为力低聚物水解,宠物碎片降低了21%。基因的重新插入恢复了两个功能。因此,我们已经确定了在废水comamonas中降低宠物降解水解酶的本构生产,该水解酶可以用于塑料生物转化。关键词:塑料废物,废水,生物降解,显微镜,蛋白质组学,PET水解酶
摘要 本研究利用CRISPR/Cas9核糖核蛋白(RNP)复合体系统对康乃馨乙烯(ET)生物合成基因[1-氨基环丙烷-1-羧酸(ACC)合成酶1(ACS1)和ACC氧化酶1(ACO1)]进行编辑。首先,验证靶基因(ACS1和ACO1)的保守区域,以生成不同的单向导RNA(sgRNA),然后使用体外切割试验验证sgRNA特异性切割靶基因的能力。体外切割试验表明,sgRNA在切割各自的靶区域方面具有很高的效率。将sgRNA:Cas9复合物直接递送到康乃馨原生质体中,并对原生质体中的靶基因进行深度测序。结果表明,sgRNA 适用于编辑 ET 生物合成基因,因为 ACO1 的突变频率范围为 8.8% 至 10.8%,ACS1 的突变频率范围为 0.2–58.5%。在对用 sgRNA:Cas9 转化的原生质体产生的愈伤组织中的目标基因进行测序时,在 ACO1 中发现了不同的 indel 模式(+ 1、- 1 和 - 8 bp),在 ACS1 中发现了不同的 indel 模式(- 1、+ 1 和 + 11)。这项研究强调了 CRISPR/Cas9 RNP 复合物系统在促进康乃馨 ET 生物合成的精确基因编辑方面的潜在应用。关键词 愈伤组织,CRISPR/Cas9,乙烯生物合成基因,Indel 模式,体外裂解,原生质体
以及基于碳的纳米电子和旋转型的潜在应用。除了可调节的边缘结构和宽度外,GNR中引入曲率是其化学物理特性修饰的强大结构特征。在这里,我们报告了第一个基于pyrene的GNR(PygNR)的有效溶液合成,该溶液通过一锅K区氧化和其相应良好可溶性四氢苯二酚基于多苯乙烯前体的曲线几何形状和曲面几何形状。有效的A 2 B 2型铃木聚合和随后的Scholl反应可提供高达〜35 nm长的弯曲GNR轴承和扶手椅。模型化合物(1)的构造是从四氢苯二酚基的寡苯基前体中的pygnr切割,证明了单锅K区域氧化和Scholl环化的概念和效率,这是由单晶X射线衍射分析清楚地揭示的。PYGNR的结构和光学性质由Raman,FT-IR,固态NMR和UV-VIS分析研究,并支持DFT计算。pygNR显示在680 nm处的吸收最大值,表现为〜1.4 eV的狭窄光带隙,作为低频带GNR的资格。此外,PYGNR上的THZ光谱估计其
摘要:聚乙烯解构对可重复使用的较小分子受到其烃链的化学惰性的阻碍。热解和相关方法通常需要高温,能量密集型,并产生多种化合物的混合物。在轻度条件下的选择性切割反应() 200°C)是提高化学回收和升级方法的功效的关键。 可以通过在阶梯生长或链生长的合成构建中,可以通过在聚乙烯链中引入低密度的预定断裂点来实现这些。 另外,可以通过脱氢和随访反应或通过氧化对长链二羧酸盐来实现后消费者聚合物聚合的功能化来实现。 在环境条件下通过上述断裂点解构垃圾可以减轻塑料的持久性,作为闭环回收的后备力。200°C)是提高化学回收和升级方法的功效的关键。可以通过在阶梯生长或链生长的合成构建中,可以通过在聚乙烯链中引入低密度的预定断裂点来实现这些。 另外,可以通过脱氢和随访反应或通过氧化对长链二羧酸盐来实现后消费者聚合物聚合的功能化来实现。 在环境条件下通过上述断裂点解构垃圾可以减轻塑料的持久性,作为闭环回收的后备力。。另外,可以通过脱氢和随访反应或通过氧化对长链二羧酸盐来实现后消费者聚合物聚合的功能化来实现。在环境条件下通过上述断裂点解构垃圾可以减轻塑料的持久性,作为闭环回收的后备力。
随着全球垃圾的不断积累,不可水解塑料的生物催化降解是一个快速发展的研究领域。能够断裂合成聚合物中碳-碳键的酶备受追捧,因为它们可以为环境友好的塑料回收提供工具。尽管有一些报道称氧化酶可作用于不可水解塑料,包括聚乙烯或聚氯乙烯,但这些材料是否易于进行有效的酶促降解这一观点仍然存在争议,部分原因是缺乏独立重现先前观察结果的研究。在这里,我们尝试重复两项最近的研究,这两项研究报告称,可以使用来自 Galleria mellonella(所谓的“ Ceres ”)的昆虫六聚体或来自 Klebsiella sp 的细菌过氧化氢酶-过氧化物酶分别实现聚乙烯和聚氯乙烯的解构。重现先前描述的实验,我们没有观察到使用多种反应条件和多种底物类型对塑料有任何活性。通过深入研究先前数据和我们的观察结果之间的差异,我们展示了原始实验结果可能被误解的原因和方式。
乙烯基壁板已在美国的住宅外部广受欢迎。以隔热形式,该壁板包括包含泡沫材料的乙烯基壳,胶囊和底物,可作为有效的绝缘材料。尽管提供了一种具有成本效益的解决方案,但具有许多好处,例如提高能源效率,直接安装,降噪,固有的低易燃性,美学吸引力,最小的维护需求,耐用性,耐用性以及针对湿度和霉菌等环境因素的保护,但有两个关键领域可进行潜在的改进。首先,暴露于太阳,热,雨,风,灰尘和污染物可能会导致壳的降解和破裂,从而影响其耐用性,从而影响其作为保护性外层的有效性。其次,火灾性能是一个问题,尤其是当乙烯基壁板以隔热形式使用或安装在易燃泡沫绝缘材料上时。2021年国际能源保护法(IECC)在遵循规定的合规选项时,在大多数美国地区(气候区4及以上)提出了对住宅建筑物外部连续绝缘的要求。一些绝缘材料,例如泡沫聚苯乙烯或聚氨酯喷雾泡沫的特定等级,是高度易燃的。如果发生火灾,则可以用作防止泡沫绝缘的外部火势,以抑制火力快速生长。由于野生世界界面(WUI)火灾的流行,此特征越来越重要。尽管乙烯基壁板,基于不塑性的聚氯化氯化物(U-PVC),但固有地表现出火焰 - 降膜特性,但它可能不是有效的火势屏障。这种限制可能是由于熔化或可能引起的乙烯基壁板开裂等问题引起的。
