核孢子膜复合体(NPC)是ProteinAssembliestHatformChannelsCractrossthenaclear核包膜,以介导细胞核与细胞质之间的通信。另外,NPC与染色质相互作用,并影响多个基因的位置和表达。有趣的是,NPC的组成在不同的细胞类型,组织和发育状态下可能会有所不同。在这里,我们回顾了最新发现,这表明NPCCOMPOSITION的修改,包括post-translationalmodifations,PlayAninstructiveriverLolectiverIncellincellfate机构。,我们专注于细胞特异性NPC脱乙酰化在不对称分裂的发芽酵母中的作用,该酵母调节了传输依赖性和与运输无关的NPC函数,以确定对子细胞中新的分裂周期的承诺时间。通过调节蛋白质定位和基因表达,NPC被作为细胞同一性的中心调节剂而出现。
特发性肺纤维化(IPF)是一种慢性进行性疾病,是未知来源和最常见的间质性肺部疾病。但是,IPF的治疗选择是有限的,迫切需要新的疗法。组蛋白脱乙酰基酶(HDACS)是参与染色质重塑和基因转录调控的组蛋白乙酰化活性的酶。越来越多的证据表明,HDAC家族与包括IPF在内的慢性杂化疾病的发展和发展有关。本评论旨在总结有关HDAC和相关抑制剂及其在治疗IPF中的潜在应用的可用信息。将来,HDACs可能是新的靶标,可以帮助理解PF的病因,并且选择性抑制单个HDAC或HDAC基因的破坏可能是治疗PF的策略。
亨廷顿氏病(HD)是一种神经退行性疾病,其发病机理是由亨廷顿蛋白基因氨基末端的多谷氨酰胺扩张引起的,导致突变型HTT蛋白的促进。HD的特征是功能性运动功能障碍,认知障碍和神经精神病障碍。组蛋白脱乙酰基酶6(HDAC6)是一种微管相关的脱乙酰酶,已显示出在HD模型中诱导运输和释放缺失的表型,而HDAC6抑制剂的处理可通过增加HD的抑制作用,从而增加HD的表型,从而通过增加α-α-α-蛋白乙酰化酶的繁殖水平来增强HD的水平。 (MHTT)聚集体,建议HDAC6抑制剂作为HD强奸剂。在这项研究中,我们采用了体外神经干细胞(NSC)模型和HD的体内YAC128转基因(TG)小鼠模型来测试由Chong Kun Dang开发的新型HDAC6选择性抑制剂CKD-504(CKD Pharmaceu-tical Corp.,Korea)。我们发现,CKD-504小管蛋白乙酰化,微管稳定,轴突转运以及在体外突变亨廷汀蛋白的减少。在体内研究中,我们观察到CKD-504改善了亨廷顿氏病的病理:缓解行为缺陷,轴突运输的增加和神经元的数量,恢复的突触性功能(CS)电路中的突触功能,MHTT的积累,炎症,炎症,tau Hyperphosphospation and yac ifflosphosphoration in yac incy in yac inac inacy in yacy inacy in yacy incy incy in yac incy inace incy in y y ac yace incy incy in y y ac py y y ac py hyace yac yac128 tg incy incy incy incy complatizon Incormation。这些新型结果将CKD-504作为HD的潜在治疗策略。[BMB报告2023; 56(3):178-183]
摘要:尽管多发性骨髓瘤的治疗方法不断改进,蛋白酶体抑制剂和免疫调节药物也得到了广泛应用,但其治疗难度依然很大。尽管患者的治疗效果有所改善,但该病仍难免复发,而且在大多数情况下,仍无法治愈。在过去十年中,针对恶性浆细胞增殖和存活所必需的细胞蛋白的新药数量激增。在这篇综述中,我们重点关注新的可用药靶点,这些靶点可开发针对表面抗原(CD38、CD47、CD138、BCMA、SLAMF7、GPRC5D、FcRH5)、表观遗传调节剂抑制剂(如组蛋白去乙酰化酶 (HDAC))以及针对抗凋亡 (BCL-2)、核糖体 (eEF1A2) 和核输出 (XPO1) 蛋白的药物的单克隆抗体和细胞疗法。
1.1。真核生物中的表观遗传标记,DNA围绕组蛋白八聚体形成核小体,可以化学修饰。在组蛋白尾部进行的这些修饰,例如甲基化和乙酰化,影响染色质结构和基因可及性,而无需改变DNA序列。对这些修改对基因表达的影响需要诱导其在神经区域的收益或损失来评估因果关系。特定的修饰,H3K4ME3,与活性基因启动子相关,而H3K9ME3和H3K27ME3与转铺回归有关(Policarpi等,2022)。存在H3K4me3与转录之间的相关性,但是为了研究因果关系,需要通过组蛋白脱甲基酶诱导H3K4ME3损失的实验来确定在那里是否下调转录。
摘要。组蛋白改变是肾癌的标志。组蛋白乙酰化修饰由溴结构域蛋白(BRD)介导,已被认为与多种癌症类型有关,已证明几种靶向抑制剂是癌症辅助治疗的有希望的方式。作为肾细胞癌(RCC)对放射疗法或化学疗法不敏感,对有效的辅助疗法的探索仍然是晚期RCC的重要研究方向。目前,RCC中溴结构域家族蛋白的研究有限,溴结构域家族蛋白在RCC中的作用尚未完全阐明。本综述讨论了溴结构域蛋白在RCC中的作用,旨在探索BRD相关药物在这类癌症中的潜在治疗靶标。
抽象的N- froocenylmethylanirine(FA)及其N-乙酰化衍生物(NFA)已被合成,并以各种物理化学技术(例如1 h和13 c NMR光谱法)进行了合成和充分的特征。通过环状伏安法(CV)和分子对接(MD)研究了FA和NFA与鸡血DNA的相互作用。获得的结果表明,FA和NFA都通过静电相互作用与双螺旋DNA的次要凹槽强烈结合。tES静电相互作用,例如CV的正式正式转移和离子强度效应。结果进一步表明,通过MD分析获得的结合常数和游离结合能与从CV获得的结合常数和自由结合能大致匹配。此外,从伏安数据数据中评估了结合位点的大小。
摘要:最近,发酵饮料中褪黑激素的存在与酒精发酵过程中的酵母代谢有关。褪黑激素最初被认为是脊椎动物的松果腺的独特产物,在广泛的无脊椎动物,植物,细菌和真菌中也被鉴定出来。这些发现带来了研究褪黑激素在酵母中的功能以及其合成的机制的挑战。但是,提高发酵饮料中这种有趣分子的选择和生产的必要信息是披露代谢途径中涉及的基因。到目前为止,仅提出了一个基因,该基因参与了酿酒酵母中的褪黑激素的产生,PAA1,一种多胺乙酰基转移酶,这是脊椎动物的Aralkylamine N-乙酰基转移酶(AANAT)的同源物。在这项研究中,我们使用不同的蛋白质表达平台评估了不同可能底物的生物转化,例如5-甲氧氨基胺,色氨酸和5-羟色胺,评估了PAA1的体内功能。此外,我们通过结合全局转录组分析和使用强大的生物信息学工具来预测S. cerevisiae中的Aanat的类似域,从而扩展了对新的N-乙酰基转移酶候选的搜索。候选基因的AANAT活性通过大肠杆菌中的过表达来验证,因为奇怪的是,该系统证明了比其自己宿主的酿酒酵母中的过表达更高的差异。我们的结果证实了PAA1具有乙酰化不同的芳基胺的能力,但AANAT活性似乎不是主要的乙酰化活性。我们还证明,PAA1P并不是这种AANAT活性的唯一酶。我们对新基因的搜索在酿酒酵母中检测到HPA2是一种新的芳基烷基胺N-乙酰基转移酶。这是第一个报告,清楚地证明了该酶参与AANAT活性。
Sirtuin 6 (SIRT6) 是一种 NAD+ 依赖性组蛋白去乙酰化酶,已证实可在多种癌症类型中发挥抑癌基因的作用,包括头颈部鳞状细胞癌和食道鳞状细胞癌 (HNSCC 和 ESCC)。然而,在 HNSCC 和 ESCC 中激活 SIRT6 的疗法的潜力仍未被探索。在这项工作中,我们研究了变构 SIRT6 激活剂 MDL-800 在体外和体内 HNSCC 和 ESCC 细胞系中的治疗潜力和作用机制。首先,我们表明 MDL-800 治疗通过抑制 HNSCC 和 ESCC 细胞系的增殖和迁移在体外表现出广泛的抗肿瘤活性。在细胞衍生的异种移植小鼠模型中,MDL-800 治疗有效延缓了两种癌症模型中的肿瘤生长。从机制上讲,我们利用全局 H3K9ac 乙酰化分析和蛋白质阵列证明 MDL-800 治疗可有效抑制葡萄糖代谢和蛋白质翻译,而这些是由 mTOR、E2F 相关 G1/S 转录、核糖体蛋白 S6 (S6) 和 4E-BP1 活性受阻引起的。这种 mTOR 抑制会诱导涉及 IGF-1R/INSR 激活的反馈回路,从而促使葡萄糖进入细胞。由于 PI3K/AKT 通路变得过度活跃,IGF1R 激活限制了 MDL-800 的抗肿瘤活性。使用 alpha 特异性 PI3K 抑制剂 (BYL719/Alpelisib) 阻止该反馈回路,当 MDL-800 和 BYL719 结合使用时可产生协同抗肿瘤作用。在体内,MDL-800 和 BYL719 的联合治疗可延长反应时间,即使在初始治疗后 30 天也观察到最小的进展。总体而言,我们的研究确定了 HNSCC 和 ESCC 中 SIRT6 激活的分子机制。我们的研究结果表明,SIRT6 激活剂可能具有治疗潜力,无论是单独使用还是与 PI3K 抑制相结合,都可以治疗 SIRT6 下调并作为肿瘤抑制因子的癌症。
摘要 靶向激活内源基因是细胞工程的重要方法。本文,我们报道了核酸酶失活的 dCas9 同时、顺序或作为单个四部分效应物与转录激活因子 (VPR) 和表观遗传效应物 (组蛋白乙酰转移酶 p300 核心的催化结构域) 融合,可以增强靶基因的激活。复合激活因子 VPRP 在不同细胞类型的一组基因中的表现比单个激活因子更有效。我们利用效应物表征了宿主染色质乙酰化和转录组的脱靶效应。我们的工作表明,转录和表观遗传效应物可以一起使用来增强基因激活,并表明需要进一步优化表观遗传效应物以减少脱靶。