蛋白质翻译后修饰 (PTM) 深刻影响蛋白质功能,并在几乎所有细胞生物学过程中发挥关键作用。PTM 的多样性及其串扰与肿瘤转化、致癌作用和转移中涉及的许多关键信号传导事件相关。各种 PTM 的病理作用与癌症标志性功能、癌症代谢和肿瘤微环境调节的各个方面有关。PTM 研究已成为癌症研究的一个重要领域,有助于了解癌症生物学并发现新的生物标志物和治疗靶点。在有限的范围内,本综述试图讨论一些在癌症生物学中具有重要意义的高频 PTM,包括磷酸化、乙酰化、糖基化、棕榈酰化和泛素化,以及它们在临床应用中的意义。这些蛋白质修饰是最丰富的 PTM 之一,与致癌作用密切相关。
异常表观遗传学已被认为是肿瘤进展的早期事件,尤其是赖氨酸异常的乙酰化,在肿瘤发生中已被理解。因此,它已成为抗癌药物开发的有吸引力的目标。但是,由于毒性和耐药性问题,HDAC抑制剂的成功有限。目前的研究涉及基于二烷酮的HDAC6和抗tubulin li Gands作为抗癌剂的设计和合成。类似物9和21中有两个表现出有效的抗增殖活性(IC 50,0.36 - 3.27 µm),对HDAC 6酶的高效力很高。化合物21对HDAC 6显示高选择性,而9个表现出低选择性。两种化合物还均显示了微管稳定效应和抗炎作用。具有抗炎作用的双重靶向抗癌药将来会更具吸引力的临床候选者。
摘要:尽管基于关键致癌突变的生物靶向疗法在局部晚期或转移性甲状腺癌的治疗中取得了重大进展,但耐药性的挑战促使我们探索其他潜在有效的靶点。本文回顾了甲状腺癌中的表观遗传修饰,包括 DNA 甲基化、组蛋白修饰、非编码 RNA、染色质重塑和 RNA 改变,并更新了用于治疗甲状腺癌的表观遗传治疗药物,例如 DNMT(DNA 甲基转移酶)抑制剂、HDAC(组蛋白去乙酰化酶)抑制剂、BRD4(含溴结构域蛋白 4)抑制剂、KDM1A(赖氨酸脱甲基酶 1A)抑制剂和 EZH2(zeste 同源物 2 增强子)抑制剂。我们得出结论,表观遗传学有望成为甲状腺癌的治疗靶点,值得进一步进行临床试验。
摘要:我们描述了具有一系列酰胺指导组的吲哚胺的钯催化的C7-乙酰化。虽然在吲哚核和N1-acyl组上耐受多种取代基,但乙酰氧基化对C2-和C6-丁香碱取代基最敏感。使用MMOL尺度上的肉桂酰胺底物证明了这种吲哚C7-乙酰氧基化的实用性。几个N1-acyl组,包括天然生物碱中存在的基团,在竞争性的C5氧化中指导吲哚胺底物的C7-乙酰氧基化。这种化学的应用允许首次通过晚期C17-乙酰乙酰化的N-苯甲酰苯甲胺的后期C17-乙酰氧基化首次合成N-苯甲酰丙烯酸酯。简介吲哚氨基结构在许多生物活性吲哚生物碱中无处不在。1吲哚生物碱的aspidosperma家族包括化学合成的当前感兴趣的成员,鉴于其结构复杂性,具有连续的立体中心以及在多环芯上的氧化和取代程度。1,2个生物碱家族的许多成员在吲哚细胞结构上具有C17 -O键(图1A)。1b,3,4 c17-氧化的aspidosperma生物碱的策略在很大程度上取决于使用被转化为吲哚氨基结构的含氧启动材料。5值得注意的是,过渡金属在催化C – O键通过Arene功能化6的最新进展尚未应用于C17氧化的aspidosperma生物碱的合成。受单一吲哚碱生物碱的生物合成的启发,其中多环状核心经历酶促修饰,包括甲基化,酰基化和C – H氧化,7我们寻求化学选择性的C17-氧合C17-氧化作用,以使其均匀的综合综合综合,以促进了疗程。
真核生物的染色体由DNA和组蛋白组成,组蛋白的甲基化、乙酰化等化学修饰可诱导染色体聚集和松弛,从而改变基因表达模式。HP1已被证实为H3K9甲基化的结合蛋白,在促进染色体聚集中发挥作用。由于哺乳动物中HP1蛋白有3个旁系同源物,我们利用基因组编辑技术建立了3个HP1均缺失的细胞,并与正常细胞进行比较,发现在HP1缺陷细胞中,H3K9甲基转移酶和去甲基化酶大幅降解,染色体不能恢复成正确的结构(图1)。对部分功能缺失的HP1突变体的分析表明,HP1将H3K9甲基转移酶和去甲基化酶束缚在染色质上,阻止这些酶降解(图2)。
摘要:壳聚糖是一种通过壳蛋白脱乙酰化获得的带正电荷的多糖。它属于一组可生物降解,生物利用和无毒的材料。因此,这是一个有希望的矩阵,用于创建不同活性剂的输送系统。最近,人们对纳米传递系统的关注很大,作为携带者,以实现更好的生物利用度,从而使加载药物的效率更高。本评论集中在基于壳聚糖的纳米颗粒的进展上,以靶向抗肿瘤药物的靶向递送。本文讨论了过去三年来的文献报道,其中壳聚糖纳米颗粒被用作抗肿瘤治疗中使用的活性物质和具有抗癌特性的潜在新药。特别注意用于提高治疗效果的不同治疗方法,并最大程度地减少特定活性物质的副作用。
摘要:药物治疗癌症通常基于同时抑制不同的生存途径,以改善治疗结果并降低复发风险。虽然这种策略传统上仅通过同时施用几种药物来实现,但最近开发的多靶向药物(即本质上能够同时靶向几种与癌症发病有关的大分子的化合物)对癌症治疗产生了巨大影响。本综述重点介绍用于急性髓系白血病 (AML)、慢性髓系白血病 (CML) 和淋巴肿瘤的双激酶抑制剂的最新进展,详细介绍临床前研究以及正在进行的临床试验。还简要概述了应用于白血病的双靶向抑制剂(激酶/组蛋白去乙酰化酶 (HDAC) 和激酶/微管蛋白聚合抑制剂)。最后,介绍了最近开发的基于蛋白水解靶向嵌合体 (PROTAC) 的激酶抑制剂。
壳聚糖(CS)已广泛探索一种天然可生物降解的聚合物,以用于多种药物和生物医学应用。cs源自几丁质聚(N-乙酰葡萄糖胺),该聚集蛋白通过碱性脱乙酰化从甲壳类动物的壳中分离出来。CS包含葡萄糖胺和N-乙酰葡萄糖单元,通过(1-4)糖苷链路连接在一起[1]。CS的结构为化学修饰提供了多种选择,这可能会导致具有独特特性的广泛衍生物。CS链上有三个反应性位点实现化学修饰:一个原代胺和两个羟基(原发性或次要)(图。1)。主要的胺组呈现出适用于药物应用的CS的特殊特性。CS的阳离子特征有助于
分离是分析化学或化学测量科学的关键步骤,使复杂样品分解为单个成分。通过在空间或时间上分离这些组件,分离通过消除样品基质物种的干扰来提高分析精度。此功率也使净化成为可能进行进一步研究。此外,分离可以通过集中目标成分来扩大后续的分析方法。已建立和成熟的分离技术被广泛用于科学研究中,但是分析任务的复杂性日益复杂,需要先进的技术。这个主题藏品展示了这个不断发展的领域的趋势和特征。高级分离科学对于应对我们今天面临的挑战至关重要。为了反映这一点,我们策划了一个主题收藏,其中包含来自三个主要国家的五篇评论论文和八个研究论文:中国(10篇论文),日本(2篇论文)和美国(1篇论文)。主题分为三类:分离的高级材料,高级方法和潜在应用。讨论的晚期材料包括分子印刷聚合物,金属有机框架,多孔有机框架,纳米颗粒和纳米线。先进的方法涵盖了连字符技术,例如液相色谱串联质谱法,以及纳米颗粒辅助的超滤,阳离子表面活性剂辅助样品制备,磁性固相提取等。前瞻性应用从手性分离到选择性标记,重点是生物学和生物医学研究。这包括对除草剂残基,肽,蛋白质,代谢产物,对映异构体,单链DNA,信使RNA,细胞外囊泡,表观遗传修饰的组蛋白和质量限制样品的分析。两部值得注意的作品强调了分离科学的最新进展。用于捕获富含CPG的SSDNA的基于ZnO/Sio2 Core/shell纳米纤维设备的第一个报告。这在CPG部位的DNA甲基化分析中具有潜在的应用,这是早期癌症检测的有希望的诊断标记。第二次工作提出了一种蛋白质组学方法,用于定量分析雌二醇刺激下MCF-7细胞中表观遗传组蛋白的修饰。这项研究证明了了解雌激素暴露对肿瘤发生和乳腺癌进展的重要性。开发了一种基于氨基酸在细胞培养(SILAC)中稳定的同位素标记的新型定量蛋白质组学方法,用于分析雌激素暴露下MCF-7细胞中的组蛋白的翻译后修饰和蛋白质表达变化。该研究确定了49个组蛋白变异,有42个量化,揭示了两种与乳腺癌相关的差异表达蛋白。对470个组蛋白肽的分析,具有各种修饰,例如甲基化,乙酰化和磷酸化,表明150个差异表达。值得注意的是,组蛋白H10和H2AV影响了核小体结构和基因激活。在雌激素受体(ER)激活后,Kat7的募集可能会影响特定部位的H4乙酰化。此外,HDAC2的表达和核总质转运对于调节组蛋白乙酰化至关重要。这项工作强调了基于LC-MS/MS的定量蛋白质组学在理解组蛋白修饰的生理作用方面的力量。
摘要:尽管胶质母细胞瘤 (GB) 的多模态治疗最近取得了进展,包括手术、放疗、化疗和靶向治疗,但总体预后仍然很差。GB 治疗的一个有趣靶点是组蛋白去乙酰化酶家族 (HDAC)。由于 HDAC 抑制剂对 DNA 修复、细胞增殖、分化、凋亡和细胞周期等具有多效性作用,在过去十年中作为抗癌药物受到了广泛关注。尽管已知其潜在机制,但其治疗活性尚不明确。在这篇综述中,对用于 GB 治疗的 HDAC 抑制剂的现状进行了广泛的概述,然后概述了当前的 HDAC 靶向放射性药物。对 HDAC 表达或活性进行成像可以提供有关 HDAC 酶在胶质瘤形成中的作用的关键见解,从而确定可能受益于 HDACi 靶向治疗的患者。