摘要:基于从尼日利亚南部Ekiti State收集的可可豆废料样品的氧化石墨烯的合成和表征的研究。使用改良的悍马方法将原始的可可豆废料废物碳碳碳碳碳碳碳碳酸化进行了碳化和合成。使用X射线衍射(XRD)表征了原始的可可豆荚,石墨烯形式和获得的石墨烯氧化物;傅立叶变换红外光谱法(FT-IR)和扫描电子显微镜(SEM)。由原始可可粉(农业废物)产生的石墨粉的百分比为1.290 g,对应于21.5%的产率。可以从此推断出,无论百分比的百分比,它都与形成的石墨烯无关。SEM分析显示出发达的聚集生长,晶粒尺寸形成生可可可粉的显着增加到氧化石墨烯。对氧化石墨烯的FT-IR分析显示,在(1118.2 cm -1)的C-O-C处(3772.9 cm -1)在(3772.9 cm -1)上的可用性证实了氧化在氧化石烯后的存在。对于石墨烯而言,分配的峰分别位于(3205、1632、2117和1632 cm -1),分别与(OH,C = C,C = C和C-O)相对应。XRD分析显示宽范围扫描,氧化石墨烯峰封闭至2θ= 25和45°,表明碳的混乱性,而石墨烯XRD结果显示在(26.5),(30.4),(30.4),(32.6),(32.6)和(42.1)的四个峰。从结果中确定的是,可可豆pod废物具有产生高价值的吸附剂产品以减少环境污染的巨大潜在潜力。1。简介
2-苯基乙醇以其玫瑰般的气味和抗菌活性而闻名,通过苯基丙酮酸脱羧酶(PDC)和醛还原酶的顺序反应通过外源苯基丙酮酸合成。我们首先靶向ARO10,这是酿酒酵母的苯基丙酮酸脱羧酶基因,并鉴定出合适的醛还原酶基因。大肠杆菌转化体中ARO10和YAHK的共表达在批处理培养中产生1.1 g/L的2-苯基乙醇。我们假设PDC活动可能有瓶颈。利用基于计算机的酶进化来增强产量。与野生型ARO10相比,在ARO10(ARO10 I544W)中引入氨基酸取代(ARO10 I544W)稳定了苯基丙酮酸底物的芳族环,增加了2-苯基乙醇的产量4.1倍。培养ARO10 I544W表达大肠杆菌的培养2.5 g/l的2-苯基乙醇,在72小时后,葡萄糖的产量为0.16 g/g。这种方法代表着显着的进步,迄今为止使用微生物从葡萄糖中获得了2-苯基乙醇的最高收率。培养ARO10 I544W表达大肠杆菌的培养2.5 g/l的2-苯基乙醇,在72小时后,葡萄糖的产量为0.16 g/g。这种方法代表着显着的进步,迄今为止使用微生物从葡萄糖中获得了2-苯基乙醇的最高收率。
1医学与药学学院微生物,血液学和免疫学系,DSchang大学,P.O。Box 96, Dschang, Cameroon 2 Laboratory of Tropical and Emerging Infectious Diseases, Buea, Cameroon 3 Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium 4 Department of Biomedical Sciences, Faculty of Health Sciences, University of Bamenda, P.O.Box 39,Bambili,喀麦隆5综合系统生物学研究所(I2SYSBIO),Valencia的CSIC-大学,Paterna 46980,西班牙6日6医学实验室科学系,Bamenda大学卫生科学学院,P.O. BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。 box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国>Box 39,Bambili,喀麦隆5综合系统生物学研究所(I2SYSBIO),Valencia的CSIC-大学,Paterna 46980,西班牙6日6医学实验室科学系,Bamenda大学卫生科学学院,P.O.BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。 box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国>BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国
摘要:乙醇已成为化石燃料的一种有希望的替代品,但其使用可以导致润滑剂的大量稀释,尤其是在冷启动或交通繁忙的过程中。这种稀释会影响添加剂的性能,包括摩擦性修饰剂等摩擦二硫代氨基甲酸酯(MODTC),旨在减少在极端接触条件下的摩擦。先前的研究表明,乙醇可能会影响MODTC的性能,促使该研究的目的是研究乙醇对MODTC TRIPOFILMS的影响及其在边界润滑条件下的摩擦反应。因此,用含有不同乙醇浓度的MODTC的完全配方的润滑剂进行了互助摩擦学测试。结果表明,临界乙醇稀释水平通过MODTC激活抑制危害降低,从而导致类似于基础油的摩擦系数(COF)。用多乙二醇(PAO) + MODTC简单混合物测试的表面显示出与添加乙醇的COF增加。使用拉曼光谱法,X射线光电子光谱(XPS)和X射线吸收光谱在边缘结构(XANES)附近分析测试表面,揭示了硫酸盐,MOO 3,MOS 2,MOS 2和MOS X O Y化合物在与乙醇稀缺的表面上形成的互动化合物中的互动化合物。然而,乙醇的添加增加了互感的硫酸盐和MOO 3含量,而牺牲了诸如MOS 2和MOS X O Y之类的减少摩擦化合物。关键字:钼二硫代氨酸(MODTC);乙醇; TROBOFILM;摩擦修饰符;添加剂;润滑剂这些发现表明,含有MODTC的润滑剂中的乙醇稀释会产生富含氧气的界面培养基,有利于形成具有不足摩擦能力的化合物的形成。
全球对化石资源耗竭及其环境影响的关注正在促使科学界从石油基于石油的转变为可持续化学物质。二苯甲酸(DPA)及其衍生物(DPE)在合成环氧树脂和多碳酸盐的合成中,成为基于生物和内分泌干扰素双酚A的基于生物的替代品[1,2]。进一步治疗后,DPA可以用作无异氰酸酯聚氨酯的前体[3-5]。此外,DPA在绘画配方以及抗菌棉织物中发现了一种添加剂[6,7]的添加剂[6,7] [8]。dpa通常是由无溶剂的冷凝液或在存在BrØNSTED酸催化剂的情况下通过苯酚和葡萄蛋白酸(或脱氟氨酸酯)的两个分子(或脱硫酸酯)的两个分子羟基烷基合成的。[9]脱甲酸和苯酚都可以源自木质核仁生物质[10-12]。葡萄干酸高度可用,廉价,被认为是美国能源部从生物质中衍生出的最有价值的化学物质之一[13,14]。苯酚的亲电芳族取代发生在Ortho - Para位置产生了两个立体异构体,P,P,P'-DPA具有高于O,P'-DPA的商业价值,因为它与Bisphenol非常相似,因此具有化学结构[15,16]。在许多应用中,葡萄干酸的烷基酯是
为了保持技术中性,碳中性燃料必须包括从空气中提取二氧化碳的过程(包括通过光合作用)以及从排放二氧化碳的设施中提取二氧化碳,并将其回收用于生产燃料,在温室气体减排方面具有非常积极的结果。这包括可持续沼气和生物燃料以及电子燃料。此外,乙醇生产厂通过酒精发酵排放的二氧化碳(比例为 1:1)非常纯净且浓度很高,可以通过将其与可再生氢结合加工成合成燃料。保持配备内燃机的混合动力汽车的可用性将成为欧盟法规要求生产可持续航空燃料(现有的 HEFA 和未来的合成燃料)所产生的可再生燃料不可或缺的出路。将这些可再生燃料与超级乙醇-E85 中的乙醇混合将有助于巩固可持续航空燃料的经济可行性。
这些官能团结合极性溶剂中的高特定表面积使得变得有效的各种有机和无机污染物的吸附剂。go被认为是一种非常有前途的材料,用于治疗放射性废物和自然水,因为它具有高分子的放射性核素能力。[3] GO还被广泛研究为吸附剂的各种污染物,包括例如染料,重金属和有机物。近年来,GO也被研究以吸附三价欧盟。[3A,4]在某些研究中,欧盟(III)被认为是核废料中其他三价灯笼和静脉的化学类似物。[5]因此,了解欧盟(III)的吸附特别有用,对于开发出更有效的吸附剂来用于核废料处理。应注意的是,近年来,与石墨烯相关材料的放射性核素和重金属的吸附相关的研究领域受到多次缩回的影响(例如,请参阅[6])和广泛的校正。[7]因此,在以前的一些研究中,与GO吸附有关的一些研究受到了损害。通常仅使用GO分散体进行吸附研究,但不使用实心石墨氧化物或多层GO层压板进行。GO分散体可以沉积在合适的底物上(例如,通过自旋涂层[8]或滴铸造[9]),以制成多层薄膜。分散剂也可以被填充以制作根据预期的纸张命名的独立箔,作为论文[10]或膜。[11]多层组件是由不规则形状的和大小的go akes形成的,互相堆积了近似平行的平面内部方向。多层GO的吸附特性有望受到C-tattice中层间尺寸的影响,因为水或其他用于溶解的极性溶剂的肿胀
该研究项目研究了使用定量和定性植物化学分析从乙醇中提取的pleiocarpa mutica叶提取物。采购的位于尼日利亚埃努古州Uzo-Uwani地方政府地区的Ugbene-Ajima,那里收集了新鲜的pleiocarpa mutica叶子。收集后,清洁了新发芽的杂种叶。然后,我们将叶子干燥,直到它们变脆,并经常旋转它们以防止它们腐烂。使用机械研磨机将干燥的叶子降低到粉末状状态,而浸渍烧瓶则用于将1.5 kg的地面叶重1.5千克浸入100升100%乙醇中。在使用平纹细布时,将混合物过滤到烧瓶中,在不规则搅拌下将其留在72小时后,将其过滤成平坦的底部。定量的植物化学分析程序使用质谱,色谱法和分光光度计学等方法鉴定了植物样品中某种化学成分的特异性浓度。这使得可以确定植物材料中成分的浓度。定性植物化学分析技术着重于确定植物样品中几个化学基团的存在或不存在。发现生物碱,苯酚,萜类化合物和类黄酮等物质通常需要一系列化学分析或使用特定试剂。因此,已经表明,Mutica假单胞菌的乙醇叶提取物包含各种浓度的植物化学成分,可能是其生物学活性的原因。因此,使用标准定量和定性的植物化学分析技术来研究植物的化学成分,并鉴定可能具有营养,药物或药理优势的生物活性化合物。
sfu已开发了5年的PSO气候变化问责报告报告,该报告的2023年1月1日至2023年12月31日,总结了我们的温室气体(GHG)排放概况,以达到零排放的总偏移,我们在2023年取得了净净排放,我们在2023年所取得的措施使我们的GHG成分和我们的GHG零食和我们的计划降低了2024和2024的成分。(SEMP)在所有校园内都采取行动在新旧建筑中实施。该计划支持大学能源利用政策(GP 43),而2023年,西蒙·弗雷泽大学(Simon Fraser University's(SFU)的GHG总排放量为10,382 TCO2E,比2007年基线降低了46%。这些排放包括894 TCO2E,原因是制冷剂泄漏以及226 TCO2E的常规制冷剂补充剂。不包括制冷剂部分,SFU的排放量为9,262 TCO2E,表明与前几年相比,持续下降趋势。2023年实现的排放减少是我们继续努力优化能源消耗和过渡到可再生能源的结果。ke y里程碑和2 023中采取的行动,以最大程度地减少排放inc
如今,全球变暖是现代社会中最重要的关注之一,它需要考虑到环境,健康,经济等。化石燃料在这一现象中起着至关重要的作用,并且在过去几十年中找到替代方案一直是研究主题。在可用的一系列选择中,生物燃料是一种高效且在环境可持续的替代方案。生物丁醇预处理特性,例如高加热值,低波动性,高粘度和低腐蚀。此外,它是一个更安全的使用选择,它与汽油和其他燃料融合的能力将其变成了合适且有希望的可再生替代方案。生物丁醇可以由丙酮 - 丁醇 - 乙醇(ABE)发酵过程从农业产业的残留物中产生。生物丁醇与发酵汤的分离和纯化占工厂预算的40%,这是值得注意的。应用了各种分离技术,例如液 - 液体提取,膜人物剥离,真空闪光,膜过度蒸发,透明装置,反渗透,吸附等。一种适合的分离方法必须在产出中产生足够的丁醇浓度,并降低最终产品的成本,以便生物丁醇可以与其他燃料在经济上竞争。这项工作审查了现有的过程,用于将丁醇与安倍发酵的分离和纯化,包括高级方法。考虑环境和经济参数以及每种技术的上级和挑战,将详细讨论所有方法。