俄罗斯联邦及其代理人对乌克兰及其支持其自决权的国家进行了多次网络行动。自 2014 年以来,这些行动和之前的行动给乌克兰和其他地方造成了严重破坏和动乱。然而,许多观察家担心,在 2022 年 2 月俄罗斯入侵之后,俄罗斯对关键基础设施或综合常规网络军事行动的攻击会更加有效。冲突爆发一年后,关于俄罗斯网络行动为何未能达到这些预期的长期争论仍在继续,重点是大多数行动是否被乌克兰网络防御和协助行为者成功挫败,或者俄罗斯国家和非国家行为者是否无法或不愿广泛部署网络行动。相比之下,这篇聚焦文章提供了对敌对行动第一年网络冲突模式的九点观察,重点关注国家与非国家之间的互动和行动模式,同时借鉴 EuRepoC 数据和第三方分析。预计未来几年网络攻击者生态系统将进一步多样化,可能会塑造即将到来的网络威胁格局,正如 ENISA 最近的 2030 年网络安全威胁报告所呼应的那样。然而,正如本文所讨论的那样,作为网络防御者的国家也应该加强对这些多方面威胁的应对措施。
在过去十年中,由于一代又一代 EGFR 酪氨酸激酶抑制剂 (TKI) 的开发,表皮生长因子受体 (EGFR) 基因突变的非小细胞肺癌 (NSCLC) 的治疗发生了革命性的变化 (1,2)。然而,EGFR 外显子 20 插入 (EGFR 20ins) 占所有 EGFR 突变 NSCLC 病例的约 10%,不太可能从这些已获批的 EGFR-TKI 中获益 (3)。幸运的是,针对 EGFR 20ins NSCLC 的治疗已取得重大进展 (4)。2020 年,两种新药 mobocertinib 和 amivantamab 已获批用于治疗这一特定适应症。然而,与针对典型 EGFR 突变的 EGFR-TKI 相比,这些药物的疗效相当中等,在这种情况下需要其他更有效的抗癌药物。本文介绍了一例 EGFR 20ins 晚期腺癌患者,该患者之前使用 mobocertinib 治疗失败,但从第三代 EGFR-TKI furmonertinib 的高剂量治疗中获益。该病例可能为 EGFR 20ins 的 NSCLC 患者提供一种替代治疗方法。我们根据 CARE 报告清单(可访问 https://atm.amegroups.com/article/view/10.21037/atm-22-1167/rc)撰写了以下文章。
案例号。NEPR-IN-IN-IN-IN-IN-20021-0002主题:6月10日事件提交机密报告并要求进行机密待遇。6月10日事件提交报告的动议并要求
人工智能也进入了视觉艺术[7]、创意写作和诗歌[8,9]等艺术领域。更多示例可在“ML x Art”列表1中找到。本次研讨会的征集意见中也提出了一个共同的愿景,即人类创造性地使用人工智能作为工具。从这个角度来看,这些新的交互系统有望通过利用人工智能功能来实现创造力支持工具(CST,[10])的关键思想。更具体地说,这种支持可以让人类和人工智能扮演许多不同的角色(有关最新概述,请参阅[11])。例如,这包括使用人工智能作为发散或收敛代理,如霍夫曼[12]所述,即产生或评估(人类的)想法。与此相关的是,Kantosalo 和 Toivonen [13] 强调交替共同创造,即人工智能“取悦”用户和“激怒”用户。此外,Negrete-Yankelevich 和 Morales-Zaragoza [ 14 ] 描述了一组相关的角色,包括将人工智能视为“学徒”,
扩大规模在国际卫生和发展领域引起了广泛关注。人们对这一主题的兴趣源于人们普遍担心千年发展目标、国际人口与发展会议行动纲领和其他国际峰会所暗示的愿景未能如预期那样迅速有效地实现。当前需要加倍努力以应对 21 世纪的挑战。因此,为满足扩大规模的需要而做出的众多努力并不令人意外。其中一项举措是成立 ExpandNet,这是一个全球网络,旨在通过确保成功的卫生干预措施的益处能够更快、更可持续地惠及更多人,促进公平获得优质医疗服务。该网络的活动包括开发工具、宣传、技术援助、建立网络和研究 (www.expandnet.net)。
全世界只有2,200多个微电网中只有少数是“社区微电网” - 满足社区及其公民和当地企业的需求,而不是离散的实体,例如个体大学,军事基地或商业/工业客户。尽管数量有限,但现有的社区微电网装置提供了许多领先的实践。本白皮书记录了对这些社区微电网的全面审查,这些综述确定了这些实践。这本白皮书中所学的经验教训可以帮助微电网开发商和服务提供商与社区,公用事业,监管机构和其他利益相关者紧密合作,以加速社区微气流市场的增长。
2014-2020 年 JESSICA 评估研究,针对波兰九个地区:库亚维-波美拉尼亚省、罗兹省、卢布林省、小波兰省、马佐维耶茨省、西里西亚省、圣十字省、大波兰省、西波美拉尼亚省 最终报告 2014 年 4 月 30 日 免责声明:本文件是在欧盟的财政援助下制作的。本文表达的观点绝不代表欧盟的官方意见。本文件中的观点、解释或结论由作者独自承担责任。欧洲投资银行或欧盟委员会不作任何明示或暗示的陈述或保证,也不承担与本文件所含信息准确性或完整性相关的任何责任或义务,并明确否认任何此类责任。本文件仅供参考。欧洲投资银行和欧盟委员会均不承诺提供任何补充信息或更正其中的任何不准确之处。
数据收集自 69 家大型雇主,并对其中 25 家进行了访谈,目的是向研究人员介绍人力规划和预测问题的研究。这项雇主启发式调查的结果包括:(1) 72% 的雇主预测了部分人力需求,(2) 36% 的雇主预测了外部人力供应,(3) 59% 的雇主在过去 5 年内开始进行此类预测,(4) 60% 的雇主考虑销售额,45% 的雇主考虑劳动力供应进行预测,(5) 34% 的雇主预测所有员工群体的需求。其中包括 19 个案例研究,重点介绍了报告单位的描述、预测技术的有趣特征以及技术描述。附录中包含了数据收集工具和方法讨论。(EM)
香雪松是最重要的新热带木材物种之一,在其自然分布的许多地方,都受到森林砍伐和不可持续砍伐的威胁。有关遗传变异模式的信息有助于指导重新造林和遗传保护活动。然而,到目前为止,秘鲁或南美洲其他地区还没有这样的信息。在本研究中,基于扩增片段长度多态性 (AFLP) 标记,报告了该物种九个秘鲁种群之间和种群内部的遗传多样性。总体多样性水平很高 (Ht = 0.22),这与广泛分布、寿命长的热带物种的预期一致,也与之前在中美洲进行的研究一致。种群内多样性水平高于之前报告的该物种的水平 (Hs = 0.13–0.21)。分子变异分析揭示了位于不同河流的两个种群组之间以及位于同一河流的种群之间存在遗传差异。群体之间的差异大于群体内的差异。遗传和地理距离显著相关。种群间相对强烈的遗传差异可能与所研究种群的河岸、本质上是一维的空间分布模式有关。在相对未受干扰的种群和被砍伐的种群之间,多态性位点的百分比没有发现差异。在秘鲁亚马逊地区相对较小的一部分物种范围内存在明显的遗传分化,这表明在使用原产地以外的种子时需要谨慎。出于遗传保护的目的,在秘鲁亚马逊地区每个主要流域采集(异地)或保护(就地)种群可能是明智的做法。# 2007 Elsevier BV 保留所有权利。