摘要:到目前为止,玻璃是生物分子阵列的最常见底物,包括高通量测序流动细胞和微阵列。通过使用硅烷化学为原位合成或生物学或化学合成的生物分子的原位合成或表面固定化提供适当的官能团和反应性,对天然玻璃羟基表面进行了修饰。这些阵列通常是寡核苷酸或肽的,然后在荧光读数之前在温暖的水缓冲液中进行长时间的孵育时间。在这些条件下,玻璃的硅质键易于水解,导致生物分子的显着损失和伴随的测定信号丧失。在这里,我们证明,与标准单足硅烷的等效官能化相比,用二倍硅烷的玻璃表面功能化可大大提高稳定性。使用光刻原位DNA的原位合成,我们表明二倍体硅烷与磷光素化学兼容,并且在所得阵列上进行的杂交提供了大大改善的信号和信号 - 噪声比率,并且与单足硅烷官方化的表面相比。
摘要。背景/目的:口腔鳞状细胞癌 (OSCC) 是一种侵袭性恶性肿瘤,因为其局部转移和远处淋巴结转移的能力增强。广泛的细胞遗传学分析已检测到 OSCC 中的染色体不稳定性 (CI) 模式,包括大量染色体数值改变,例如多体性和偶尔的单体性,这些改变对恶性肿瘤的生物学行为产生负面影响。我们的目的是研究 OSCC 中 17 号染色体 (Chr 17) 数值失衡的频率和影响。材料和方法:使用 50 (n=50) 个福尔马林固定、石蜡包埋的原发性 OSCC 组织切片。实施显色原位杂交 (CISH) 来检测 Chr 17 着丝粒数值失衡。关于 CISH 载玻片中的筛选过程,实施了一种新颖的实时参考和校准网格平台。结果:在所检测的 50 个病例中,有 12 个(24%)观察到 Chr 17 的多拷贝。在 50 个组织切片中,有 10 个(20%)观察到多体性,在 50 个组织切片中,有 2 个(4%)观察到单体性,而其余的病例呈现正常的二倍体模式(38/50-76%)。
近年来利用CRISPR-Cas9系统构建的二倍体作物突变体文库为功能基因组学和作物育种提供了丰富的资源,然而由于基因组的复杂性,在多倍体植物中实现大规模的定点诱变是一项巨大的挑战。本文证明了利用混合CRISPR文库在异源四倍体油菜中实现基因组规模定点编辑的可行性。共设计了18,414个sgRNA来靶向10,480个目的基因,得到了1104株含有1088个sgRNA的再生转基因植株。编辑询问结果显示,178个基因中93个被鉴定为突变,编辑效率为52.2%。此外,我们发现 Cas9 介导的 DNA 切割倾向于在由同一个 sgRNA 引导的所有靶位点发生,这是多倍体植物中的新发现。最后,我们展示了利用后基因分型植物对各种性状进行反向遗传筛选的强大能力。从正向遗传研究中发现了几个可能主导脂肪酸谱和种子油含量且尚未报道的基因。我们的研究为功能基因组学、优良作物育种提供了宝贵的资源,并为其他多倍体植物的高通量定向诱变提供了良好的参考。
摘要:香蕉是重要的主粮作物,也是约 150 个热带和亚热带国家小农户的收入来源。香蕉黄单胞菌枯萎病 (BXW)、血病和莫科病等几种细菌性疾病对香蕉生产造成了重大影响。在同一块田地中同时存在细菌病原体和其他几种病原体和害虫的地区,香蕉产量差距很大。据报道,由 Xanthomonas campestris pv. musacearum 引起的 BXW 病是东非最具破坏性的香蕉病。这种疾病影响该地区种植的所有香蕉品种。只有野生型二倍体香蕉 Musa balbisiana 对 BXW 病具有抗性。开发抗病香蕉品种是控制疾病最有效的策略之一。基于 CRISPR/Cas 的基因编辑技术的最新进展可以加速香蕉改良。通过敲除致病易感性 (S) 基因或激活植物防御基因的表达,利用 CRISPR/Cas9 介导的基因编辑技术来产生对细菌病原体的抗性,已取得了一些进展。本文概述了基因编辑在控制青枯病方面的应用的最新进展和前景。
CRISPR/CAS9技术的应用已改变了我们针对基因组的指定区域和编辑指定区域的能力。对任何生物体的广泛适应性都导致了我们对许多生物过程的理解。许多当前的工具是为简单的植物系统设计的,例如二倍体物种,但是,农作物物种中有效的部署需要更大的编辑效率,因为这些效率通常包含多倍体基因组。在这里,我们检查了温度的作用,以了解CRISPR/CAS9编辑是否可以提高小麦的效率。最近发现,较高温度下的植物生长可能会增加突变率,该CAS9用小麦的两个不同启动子表达的CAS9进行了测试。增加组织培养或种子发芽和早期生长阶段的温度会增加小麦突变的频率,而Cas9酶是由Zmubi启动子驱动的,而不是Osactin驱动的。相比之下,由奥司蛋白启动子驱动的CAS9表达不会增加在转化线或转化过程本身中检测到的突变。这些结果表明,在多倍体谷物物种中,CRISPR/CAS9编辑效率可以显着提高,其生长条件的简单变化可以促进突变增加,从而创造了纯合子或无效的敲除。
图 3.二倍体黄色马铃薯品种 Criolla Columbia 的花药在不同的体外培养基中发育的愈伤组织和胚胎。A-B。致密愈伤组织 1 级。C. 易碎愈伤组织 4 级。D-E。致密、海绵状愈伤组织,2 级。F-H。致密结节状愈伤组织 2 级。I-L。致密、海绵状愈伤组织,3 级。M. 4 级海绵状愈伤组织,胚胎正在形成。N. 4 级致密愈伤组织,具有胚胎形成。O. 5 级海绵状愈伤组织,有胚胎形成。P. 5 级致密愈伤组织,带有生长和发育中的胚胎。Q. 4 级海绵状愈伤组织,胚胎正在生长和发育。R. 紧凑且海绵状的 4 级愈伤组织,带有成熟胚胎。S-T。紧凑、海绵状的 5 级愈伤组织,具有多个生长的胚胎,并且根治性发育,具有丰富的柔毛。*箭头指向胚胎………………………………107
木薯 (Manihot esculenta Crantz) 据信在南美洲驯化了大约 8000 年,并于 16 世纪由商人带到了西非 [1]。木薯与包括产橡胶的 Manihot glaziovii 在内的 98 个其他物种一起,属于大戟科、木薯属 [2 – 5]。它是一种高度杂合的作物,以多倍体或二倍体的形式存在,后者有 36 条染色体 [6],在人类消费中位居水稻和玉米之后的第三位。此外,它还可用作动物饲料,并在商业上用于生产淀粉和可生物降解塑料。该作物通过茎插繁殖,每公顷的产量范围为 5000 – 20,000 个插穗,具体取决于品种的生长性质和种植系统 [7]。作为一种作物,木薯是最耐旱的作物之一,也能耐受营养贫乏和酸性土壤。木薯产量为 3.08 亿吨,种植面积为 2780 万公顷。尼日利亚是主要生产国之一,约占全球总产量的 20%,其他主要种植国包括安哥拉、巴西、中国、刚果民主共和国、加纳、印度尼西亚、菲律宾和莫桑比克、越南和泰国 [8]。木薯在海拔 1500 – 2000 米的热带地区广泛种植。木薯种植的温度范围为 25 – 29 ℃,
这些微小的自由漂浮被子植物的特殊形态对浮萍科的分类学提出了挑战。尽管分子分类学有助于阐明该科的系统发育历史,但形态学数据的一些不一致导致浮萍属经常被错误分类。最近,Lemna japonica 是 Lemna minor 和 Lemna turionifera 的种间杂交种,这一发现为此类分类学问题提供了一个清晰的解释。在这里,我们证明了 L. minor 也能够与 Lemna gibba 杂交,从而在地中海地区产生一个隐秘但广泛分布的分类单元。描述了非分类单元 Lemna × mediterranea,并将其与假定的亲本种 L. minor 和 L. gibba 的克隆进行了比较。通过核和质体标记的遗传分析以及基因组大小测量表明,两种不同的细胞型(二倍体和三倍体)起源于至少两个独立的杂交事件。尽管总体相似性很高,但形态测量、生理和生化分析表明,L. × mediterranea 在大多数定性和定量特征上处于其亲本物种的中间位置,并且两种杂交细胞型也根据某些标准分开。这些数据证明,杂交和多倍化(陆生植物进化的驱动力)有助于浮萍的遗传多样性,并可能塑造了这些主要无性水生植物的系统发育历史。
单细胞绿色藻类Reinhardti I,在发现目前知道的有关Cilia和Flipella的组成,组装和功能的许多知识中发挥了核心作用。衣原体结合了出色的遗传学,例如将细胞作为单倍体或二倍体和进行四倍分析的能力,并在没有细胞裂解的情况下单个步骤脱离和分离agella的无与伦比的能力。在衣原体中可能存在的遗传学和生物化学的组合使纤毛的许多关键组成部分可以通过寻找定义的突变体中缺少的蛋白质来识别。很少有其他模型生物可以允许这种遗传和生化方法的无缝组合。其他主要优势包括诱导高度同步诱导的能力再生的能力,从而可以测量植物生长的动力学,以及衣原体瘤的能力,以及在玻璃覆盖物中粘附在玻璃上,可以轻松地锻炼玻璃,并在内部均可锻炼。单分子分辨率。这些优势继续努力支持衣原体作为模型系统,现在通过广泛的基因组资源,敲除菌株的收集和有效的CRISCPR基因编辑来增强。在研究与动物发育或器官生理学相关的睫状功能方面存在明显的局限性,在研究纤毛和叶酸的基本生物学时,衣原体在速度,效率,效率,成本以及可以带来的问题的方法方面只是无与伦比的。
摘要 马铃薯 ( Solanum tuberosum L.) 在确保全球粮食和营养安全方面发挥着重要作用。生物和非生物胁迫都会对块茎产量产生负面影响,而酶促褐变和冷诱导甜化则会严重导致收获后品质损失。面对人口增长和气候变化的双重挑战,马铃薯改良对其可持续生产至关重要。然而,由于马铃薯具有多种特性,包括高杂合性、四体遗传、近交衰退和二倍体马铃薯的自交不亲和性,常规育种方法不足以在相对较短的时间内实现四倍体马铃薯品种的显著性状改良。CRISPR/Cas 介导的基因组编辑为开发具有高商业化潜力的新型马铃薯品种开辟了新的可能性。在这篇综述中,我们总结了优化基于 CRISPR/Cas 的马铃薯基因组编辑方法的最新进展,重点介绍了解决该物种具有挑战性的生物学问题的方法。我们还讨论了获得无转基因基因组编辑马铃薯品种的可行性,并探索了提高马铃薯抗逆性、营养价值、淀粉组成以及储存和加工特性的不同策略。总之,本综述深入了解了使用 CRISPR/Cas 技术进行马铃薯基因组编辑的最新进展、可能的瓶颈以及未来的研究方向。