水蒸气是最重要的大气成分,对地球辐射收支有很大影响。除了水蒸气的直接辐射强迫外,其通过产生云滴的间接效应也在气候中起着至关重要的作用。因此,准确和定期地表征其在大气中的丰度至关重要,特别是在不断变化的气候系统中。在大气的上对流层/下平流层 (UTLS) 区域,水蒸气通过均质或非均质冻结过程驱动纯冰 (卷云) 云的生成,并通过沉积驱动云冰粒子的生长。卷云的辐射效应仍不为人所知;一些研究表明它们会冷却,而另一些研究表明它们会变暖,这取决于云光学厚度和冰粒大小和浓度的表现。在欧洲 CARIBIC 项目 [ 1 , 2 ](基于仪器容器的定期大气调查的民用飞机)的框架内,自 2005 年以来,我们利用实验室开发的基于光声 (PA) 方法的仪器,在 UTLS 区域(10 至 12 公里高度)的商用飞机上定期测量大气水蒸气和总水(即水蒸气和云水/冰的总和)浓度。机载 PA 水蒸气测量仪(称为 WaSul-Hygro)基于电信型近红外 (NIR) 二极管激光器。此外,为了确保同时测量总水量和水蒸气的要求,WaSul–Hygro 拥有针对低温低压条件优化的双室 PA 装置。这种操作由安装在飞机下方的特殊环境进气系统实现,该系统包含一个侧向进气口和一个前向进气口,用于对水蒸气进行采样
在发生内部短路的情况下,使用Dual-Fuse和Auxilariary Crowbar开关断开故障的腿,然后是备用腿(图。1,红色虚线框)自发连接,从而可以连续操作。为了提高系统的可靠性和紧凑性,可以在功率半导体[5],[6]组件(IGBTS,MOSFET等)上单层整合使用的熔断器,如图1(Fuse-On-transistor,蓝色虚线框)。在功率上的保险丝的集成分两个步骤进行了半导体组件。首先,熔断器,称为“独立保险丝”(图1,绿色虚线盒),由硅基板上的薄铜层(18 µm)制成,以研究组件的热和电气行为。
尺寸反射率直接方法的测量缺乏足够的灵敏度来测量激光方面的超低反射率。但是,在过去的二十年中已经开发了各种指导方法[5] [6] [7]。在这项工作中,采用了马里兰州大学[8]开发的自发发射转换(SET)方法。此方法通过将ASE光谱转换为信号组件与大多数噪声正交的傅立叶域,从而提供了高信号与噪声比(SNR)。图5显示了SET方法与TFCALC建模结果之间的比较。实验和理论在光谱的长波长部分中非常吻合。在较短的波长处延伸的差异被认为主要是由于ASE信号低,因此该区域的SNR差。
本节描述了ESD保护二极管的操作。虽然没有将ESD脉冲引入系统(即,当系统处于正常操作中时,ESD保护二极管理想地应与保护设备(DUP)断开,以免影响其操作。每个ESD保护二极管的阴极和阳极分别连接到信号线和GND,如下所示。当以这种方式连接ESD保护二极管时,它们在正常运行中时不会充当瞬态电压抑制器。当将ESD脉冲引入系统中时,有必要确保ESD保护二极管进行防止ESD脉冲到达DUP。从连接器中,ESD保护二极管和DUP可以视为并联连接。因此,重要的是要确保ESD保护二极管具有低阻抗,以便大多数ESD能量通过ESD保护二极管分流。
摘要 - 我们介绍了新的INGAAS/INP单光雪崩二极管(SPAD)的设计和实验性 - 具有两个不同直径的二极管:i)10 µm设备,适用于基于光学的量子量子应用; ii)一个25 µm的一个,更适合自由空间应用。与上一代相比,我们改进了双锌扩散的设计并优化了层结构。我们在225 K和5 V多余的偏置下分别达到了低黑暗计数率,分别为10 µm和25 µM设备,在10 µM检测器时,分别在175 K时下降到每秒几十秒。在5 V多余的偏置和225 K温度下,这两个设备还显示出较高的光子检测效率(1064 nm时为33%,在1310 nm处为31%,在10 µM Spad中为1550 nm时25%)。通过自定义读数集成电路测量了后泵,实现了非常低的概率值。时机抖动与上一代设备相媲美。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
将交流电 (ac) 转换为电化学电池所需的直流电 (dc) 的基本元件是二极管。二极管的工作原理与单向止回阀非常相似。它只允许电流朝一个方向流动。事实上,在北美以外,用于整流的半导体被称为“阀门”。半导体开发通常始于通信和其他低功率应用中使用的小信号设备。因此,在开发出相对大功率的二极管之前,二极管已经使用了十多年。第一个用于电化学生产的二极管整流器出现在 20 世纪 60 年代中期。这些早期的机器需要大量并联二极管才能获得所需的数万安培电流。通常整流器
... 用于您产品应用的激光二极管完全受到保护,不会受到静电放电、温度和操作不当的影响。这是因为原始激光二极管是一种易碎且高度不稳定的设备,具有极端的阈值行为,在不稳定的环境条件下会迅速“爆炸”。典型的激光二极管能够在“百万分之一”秒内开启... 而一个非常短暂的“错误”通常会导致彻底损坏,使激光二极管变得毫无用处。Applied Laser Systems (ALS) 已经解决了这个问题,并使激光二极管在现实世界中可用。
模块 I:电子学简介 [12 小时] 电子设备及其应用、信号、模拟和数字信号、放大器。线性波形整形电路:RC LPF、积分器、RC HPF、微分器。半导体特性、固体分类、硅能带、本征和非本征半导体、半导体电流、霍尔效应、扩散电流、漂移电流、迁移率和电阻率。模块 II:半导体二极管 [12 小时] pn 结理论、V-I 特性、负载线分析、二极管等效电路、二极管电路分析、过渡电容和扩散电容。二极管电路的应用;整流器、限幅器、钳位器。滤波电路、特殊用途二极管:齐纳二极管、LED、光电二极管、隧道二极管、变容二极管、肖克利二极管。激光基础知识。模块 III:BJT 和 FET [12 小时]
硅雪崩光二极管(APD)被广泛用作光子探测器,但是它们也可用于检测具有能量𝐸𝐸100keV的电子。尤其是,近年来对APD的使用来检测中等能量范围(10-100 KEV)的电子,特别是对于空间任务中的应用[1-3],APD耐用性与对磁场对磁场的敏感性相结合,具有吸引人的特征。虽然已经进行了一些研究使用APD来检测低能电荷颗粒[4],但使用APD来检测低(<1 keV)的能量电子是一个较少研究的领域,这是这项工作的主题。本文介绍的结果是在新型UV光检测器(Nanouv)开发的背景下产生的,并具有由垂直分配的碳纳米管制成的光(5-8]。垂直分配的碳纳米管可以使用化学蒸气沉积技术[9]生长至几百μm的长度,结果是获得高度各向异性的材料,并获得了管道方向的理想情况下,具有理想的消失密度[10,11]。由这种材料制成的光电行为可以显着降低照相电子重新吸收的可能性,这是现代紫外线探测器的不良效率的主要原因,因为光电子将直接散发到真空中,并且能够使纳米纤维ex nanotubes exul is the Mommante is pare the tube tube tube ubsum tube ubsum tub tubsum tubsum tubsum tub tub。然后通过施加的电势δ𝑉10kV加速电子,然后由位于真空管另一端的硅APD检测到长达几厘米。在图中可以看到Nanouv检测器概念的示意图1。