量子机器学习算法可以显著提高其速度,但其是否也能实现良好的泛化仍不清楚。最近,Wiebe 等人 [2016] 提出了两个量子感知器模型,它们使用 Grover 搜索比经典感知器算法实现了二次方的改进。第一个模型降低了与训练集大小相关的复杂度,而第二个模型则提高了感知器错误数量的界限。在本文中,我们介绍了一种混合量子-经典感知器算法,其复杂度低于经典感知器,泛化能力优于经典感知器。我们在样本数量和数据边际方面都比经典感知器实现了二次方的改进。我们推导出了算法返回的假设预期误差的界限,与使用经典在线感知器获得的误差相比,该界限更为有利。我们利用数值实验来说明量子感知器学习中计算复杂性和统计准确性之间的权衡,并讨论将量子感知器模型应用于近期量子设备的一些关键实际问题,由于固有噪声,其实际实施面临严峻挑战。然而,潜在的好处使得纠正这个问题值得。
在过去的几十年中,量子计算和神经形态计算已成为计算未来的两大主要愿景。量子计算利用纠缠和叠加等量子固有特性来设计比传统算法更快的算法来解决某些类型的问题。另一方面,神经形态计算从大脑中获得灵感,使用复杂的人工神经元和突触组合来模仿动物智能,以低能耗实现更快的计算。在本文中,我们回顾了这两个领域之间的不同融合,特别关注量子硬件上神经形态计算的实验实现。我们首先回顾了量子计算的两种主要方法,即基于门的量子计算和模拟量子计算。然后,我们概述了不同的受大脑启发的计算系统,包括在通用硬件上运行的人工神经网络和在专用硬件上运行的神经形态网络。在本文的核心部分,我们回顾了量子神经网络的不同方案和实验实现。我们将它们分为两组:数字(在基于门的量子计算机上实现)和模拟(利用量子退火器的动态和更普遍的无序量子系统)。量子计算的两种主要方法是基于数字门的量子计算和模拟量子计算(图 1)。基于门的量子计算使用由量子位组成的量子电路,其状态通过量子门进行操纵。量子门是可逆的幺正操作,例如单个量子位的旋转,或涉及两个或多个量子位的条件门,可用于纠缠它们。基于门的量子计算机在计算上等同于通用量子计算机,这意味着它可以表达任何量子算法。 1 需要通用量子计算机来实现著名的量子算法,例如 Shor 算法和 Grover 算法,这些算法与最佳经典算法相比分别具有指数和二次方的优势。2,3 然而,今天这些算法