摘要:本研究调查了带有电动汽车充电站的住宅建筑中二次电池储能系统的设计和尺寸。锂离子电池从电动汽车 (EV) 中丢弃时,剩余容量约为 75-80%。鉴于电动汽车的需求不断增长,符合全球净零排放目标及其相关的环境影响,这些电池的使用寿命可以通过在要求较低的二次应用中采用而延长。在本研究中,对英国一栋住宅建筑(包括电动汽车充电站)基于电动汽车 (EV) 二次电池的电力存储系统进行了技术评估。评估了系统的技术和能源性能,考虑了不同的场景,并假设电动汽车充电负载需求添加到配备储能的离网光伏 (PV) 系统中。此外,本研究使用日产聆风二次电池作为储能系统。使用 MATLAB Simulink 对提出的离网太阳能驱动能源系统进行建模和仿真。该系统模拟了隆冬时节,太阳辐射最小,能量需求最大,这是最坏的情况。引入了光伏系统开关来控制二次电池组的过度充电。结果表明,将电动汽车充电负载添加到离网系统会增加系统的不稳定性。然而,如果由于现场的物理限制而无法增加光伏安装面积,可以通过将额外的电池组(每个电池组的容量为 5.850 kWh)连接到系统来纠正这个问题。
电能在我们的日常生活和工业生产中起着非常重要的作用。化石燃料、核热能和可再生能源(例如太阳能、风能和生物质能)都可以转换成电能[1]。不幸的是,能量转换过程总是伴随着大量的能量损失。例如,核热能转化为电能的效率仅为约30%。此外,来自可再生能源的电能高度依赖于天气、季节和地域,无法及时满足实际需求。因此,迫切需要解决电能的存储和转换问题。开发先进的能量存储和转换技术对于提高能源利用效率和扩大能源应用领域至关重要。二次电池、超级电容器、水电解器和燃料电池是一些典型的电化学能量存储和转换装置。图1.1显示了这些电化学能量存储和转换系统的示意图[2]。水电解器可将电能转化为化学能,产生氢气(转化效率约为 70%),供燃料电池进一步使用。在相反的过程中,燃料电池将化学能转化为电能。二次电池(如锂离子电池)的能量转化过程是可逆的。在充电过程中,电能可以转化为化学能 [3]。在放电过程中,化学能又转化回电能。转化速度决定了系统功率,而存储容量与系统能量有关。一般来说,由于内部系统的原因,能量转换和存储的活性材料被集成到二次电池中。与二次电池不同,电解器和燃料电池系统适用于分离的转换器和存储。这种电化学存储和转换系统通常比集成存储和转换器的系统提供更高的能量。因此,电解器和燃料电池也引起了广泛关注 [4]。本文简要概述了典型的二次电池、超级电容器、燃料电池和水电解器。
1)电池类型。 “电池类型”组包括与一次电池、二次电池、备用电池和燃料电池生产相关的文件。初级化学电源成本低,很常见:很容易更换新的,但它们是一次性的。二次电源的特点是成本更高、使用寿命更长。备用电池与一次电池和二次电池的不同之处在于其内部化学过程的可逆性,从而确保其可重复使用。燃料电池与一次电源类似,只是所有的活性材料并不是设备的组成部分。它们由外部来源供给。化学反应在活化剂的帮助下开始,活化剂可以是水、气体等。
1. 电池燃料と二次电池のシテム最适化について ・ 本研究において燃料电池と二次电池のshisutemubaransuが重要である。 ・今后、特にエネルギー(kWh)のみならず、室内无人导航走体の使用方法を想定し
当时,人们以发明者路易吉·加尔瓦尼(Luigi Galvani)的名字将这种电池命名为伽伐尼电池,他用这种电池刺激了青蛙的腿。他将其命名为“动物电”。然而,伏特却认为电是由金属电极的接触产生的!直到 34 年后,米歇尔·法拉第(Michel Faraday)才证明,电是由电极表面的接触产生的,这是由于氧化和还原反应。图 4 (a) 显示了伏打电堆的复制品。示意图 4(b) 显示了简化的电化学过程。来自锌阳极的电子穿过外部导线,到达铜阴极,从而点亮灯泡。在我们的日常生活中,我们会遇到两种不同的电池,(1) 一次电池和 (2) 二次电池。一次电池是一次性使用的电池。一次电池中的电化学反应是不可逆的。例如碱性电池和干电池。二次电池是可充电电池,可多次使用。其中的电化学反应是可逆的。二次电池的例子有铅酸电池、锂离子电池等。
通过使用制造商停车场中与电动汽车 (EV) 相关的固定式存储以及基于二次电池的固定式存储单元,展示大规模集中式车辆到电网 (V2G) 充电系统的可行性。
希望他们了解电池的特性并加深思考。特别要考虑二次电池的输出和耐用性、包括 DC/DC 转换器的电源管理、热管理以及蒸发产生的氧气的处理等。
产品计划,开发,设计,评估,分析和销售二次电池材料和相关产品能源设备业务部Nishikinohama网站15-2,Nishikiminami-Machi,Kaizuka-Shi,Osaka,Japan,日本大阪
PowerSkid 利用了二次电池,将电动卡车和公共汽车的电池重新利用。这种创新方法延长了电池寿命,支持发电机和电网连接,同时显著减少二氧化碳排放,为用户节省燃料和成本。当使用柴油发电机充电时,PowerSkid 可使发动机以最大效率运行。当使用主电源充电时,系统可以设置为在夜间充电,利用排放量较低的电力。电动汽车电池生产是二氧化碳排放的主要来源,通常占电动汽车寿命排放量的近 50%。PowerSkid 采用二次电池,大大减少了浪费和对环境的影响,使其成为寻求可持续高效电源解决方案的气候意识强的用户的理想选择。