摘要:在电动汽车 (EV) 中首次使用电池代表着在回收电池之前减少对环境的影响并增加经济效益的机会。已经提出了许多不同的二次使用应用,每种应用都有多个标准,在决定最合适的行动方案时必须考虑这些标准。在本文中,提出了一种电池评估程序,该程序巩固并扩展了文献中的方法,并促进了电池在达到其首次使用寿命后的决策过程。该程序由三个阶段组成,包括电池状态评估、技术可行性评估和经济评估。探讨了电池配置选项(直接使用电池组、电池组堆叠、直接使用模块、使用模块翻新电池组、使用电池翻新电池组)。通过将这些配置与二次使用应用的技术要求进行比较,读者可以快速了解如何最好地将二次使用电池应用于其特定应用的权衡和实用策略。最后,开发了经济评估流程,以确定实施各种二次电池配置的成本以及不同最终用途应用的收入。其中包括电池评估程序的示例,以演示如何执行该程序。
摘要:由于多个经济活动领域的电气化程度不断提高,以及对可持续消费的日益重视,全球对电力的需求正在上升。与此同时,由风能和太阳能等瞬时可再生能源产生的清洁电力份额也在增加。这使得电网需要额外的缓冲容量。电池储能系统因其响应性、效率和可扩展性而被研究作为储能解决方案。基于废弃电动汽车电池二次利用的储能系统被认为是首次使用电池储能系统的成本效益高且可持续的替代方案。随着电动汽车的广泛采用,预计未来将有大量具有各种容量和化学性质的此类电池可用。这些电池通常仍具有其初始容量的约 80%,可用于高能量和高功率应用的储能解决方案,甚至可以用于兼具两者的混合解决方案。然而,目前还没有对这一主题的研究进行全面的回顾。本文首先确定了利用退役电动汽车电池的二次利用电池储能系统的潜在应用以及由此产生的可持续性收益。随后,本文回顾了欧洲正在进行的二次利用电池储能系统研究,并将其与欧洲以外的类似活动进行了比较。这篇评论表明,欧洲的研究主要集中在“电表后”应用上,例如尽量减少自发电的出口。亚洲国家,尤其是中国,将废旧电池用于固定和移动应用。在发展中国家,离网应用占主导地位。此外,本文还确定了将再利用电池纳入二次利用电池储能系统的经济、环境、技术和监管障碍,并列出了未来采用这些系统所需的发展。因此,这篇评论概述了技术的最新进展,并确定了二次利用电池储能系统未来研究的领域。
摘要 近年来,二次金属空气电池作为与可再生能源相结合的储能技术,受到了广泛关注。传统气体扩散电极中碳的氧化缩短了二次金属空气电池的寿命。用沸石代替碳基材料是解决这一问题的可能解决方案,这也是本文的目的。沸石是一种天然或合成的多孔材料,可提供必要的气体渗透性。通过按照专门开发的程序将沸石与适量的聚四氟乙烯混合,可确保电极具有所需的疏水性。实验是在自制的测试电池中进行的,该测试电池可确保在半电池和全电池配置中进行测量。在本研究中,测试是在带有氢参比电极的 3 电极自制半电池配置中进行的。电池分别在充电/放电电流 ±2 mA cm -2 下进行循环。所得结果表明,在气体扩散层中用沸石代替碳是优化气体扩散电极的一个有希望的方向。
在过去的几十年中,已经开发了一个假定的固体 - 壳有限元素的家族,并具有固体和壳有限元素的丰富益处以及特殊处理,以避免锁定现象。这些元素已被证明在具有各种本构模型的薄3D结构的数值模拟中是有效的。当前的贡献包括发达的线性和二次固体 - 壳元素与铝合金的复杂各向异性可塑性模型的组合。常规二次各向异性产量函数与涉及强各向异性的金属材料形成过程的模拟中的准确性较小。对于这些材料,可以使用晚期非二次产量功能(例如Barlat针对铝合金提出的各向异性产量标准)对塑料各向异性进行建模。在这项工作中,将各种二次和非季度各向异性屈服函数与线性八节点六个节六个固体 - 壳元素和线性六节点棱柱形固体 - 壳元素以及它们的二次对应物结合使用。将所得的固体 - 壳元素实现到Abaqus软件中,以模拟圆柱杯的基准深度绘图过程。对预测结果进行了评估,并将其与文献中获得的实验结果进行了比较。与使用常规二次各向异性产量函数相比,由开发的固体 - 壳元素与非二次各向异性产量功能的组合给出的结果表明,与实验相吻合。
2023年度补充预算“全球南方未来型共同创造项目补贴(促进日本企业海外基础设施扩建调查:第二次申请征集)”补贴对象选定结果公告 2024年12月12日 凸版株式会社 2023年度补充预算“全球南方未来型共同创造项目补贴(促进日本企业海外基础设施扩建调查:第二次申请征集)”补贴对象申请于2024年9月9日(星期一)至2024年10月11日(星期五)接受,共收到163份申请。
摘要—本文讨论了杜克能源、北卡罗来纳大学夏洛特分校 (UNCC) 和施魏策尔工程实验室公司 (SEL) 就输电变电站点对点数字二次系统 (P2P DSS) 设计进行的合作案例研究。P2P DSS 使用最简单的网络架构,其中合并单元 (MU) 使用光纤电缆直接连接到 P2P 继电器。本文讨论了在为某些电力系统配置设计 P2P DSS 时遇到的挑战,并提供了解决方案。根据设计,使用总设备数量、保护方案不可用性和保护系统运行速度作为标准,将 P2P DSS 与传统设计进行比较。杜克能源计划使用此案例研究的结果来评估其变电站的 P2P 技术。
该项目将支持展示先进回收技术的可扩展性、可靠性和成本效益。Cirba 计划改造其位于兰开斯特工厂的现有商业湿法冶金生产线,将 EOL LIB 中的黑色物质转化为中间混合金属硫酸盐溶液,然后再转化为纯化的混合金属氢氧化物。这种转化利用了一种新的专利工艺来回收纯化的混合镍、钴和锰氢氧化物。Cirba 与 Momentum Technologies 合作,后者是橡树岭国家实验室 (ORNL) 科学家开发的可扩展、节能、低成本和闭环膜溶剂萃取 (MSX) 工艺的授权方,用于将中间混合金属硫酸盐溶液分离成纯净的电池级硝酸盐。Cirba 还与 6K Inc. 合作,后者是将工程材料转化为推动增材制造行业发展的产品的领导者,用于生产 LIB 的原始阴极活性材料 (CAM)。最后,Cirba 将与 ORNL 等 DOE 国家实验室合作,使用这些 CAM 制造和验证与原始材料制成的 LIB 一样高效的功能性 LIB。
摘要:免疫治疗已成为癌症治疗的主要策略之一。与传统治疗方法不同,免疫治疗通过触发系统性抗肿瘤免疫反应可以治疗原发性肿瘤和远处转移性肿瘤,甚至可以在引起免疫记忆形成后防止肿瘤复发。然而,免疫治疗在临床实践中仍然存在患者反应率低和严重的免疫相关不良事件的问题。在这方面,纳米药物介导的治疗与免疫治疗相结合可以调节肿瘤免疫抑制微环境,从而增强抗肿瘤免疫。特别是第二近红外(NIR-II)光热疗法(PTT),利用光转换产生热量来杀死癌细胞,在与免疫疗法相结合方面表现出独特的优势。本文总结了纳米药物工程化用于NIR-II PTT联合免疫治疗的最新进展。重点介绍了纳米药物介导的 NIR-II PTT 在诱导免疫原性细胞死亡和重新编程肿瘤免疫抑制微环境以促进免疫治疗中的作用。还详细介绍了用于癌症 NIR-II PTT 联合免疫治疗的 NIR-II 吸收有机和无机非金属和无机金属纳米药物的开发。最后,提出了这些纳米药物用于联合免疫治疗的当前挑战和未来前景。
由于大量汽车锂离子电池将在未来十年内退役,退役汽车锂离子电池 (LIB) 的二次生命和回收利用引起了越来越多的关注。在这里,我们说明了电池化学、使用和回收如何影响 LIB 的能源和环境可持续性。我们发现,具有更高比能量的 LIB 表现出更好的生命周期环境性能,但它们从二次生命应用中获得的环境效益并不明显。直接阴极回收被发现在减少生命周期环境影响方面最有效,而湿法冶金回收为高性能 LIB 提供的可持续性效益有限。使用更少铝和替代阳极材料(例如硅基阳极)的电池设计可以实现更可持续的 LIB 回收。与直接回收电动汽车使用后的 LIB 相比,二次生命后回收的 LIB 的碳足迹和能源使用可分别减少 8% 至 17% 和 2% 至 6%。
用于解决量子线性系统 (QLS) 问题的量子算法是近年来研究最多的量子算法之一,其潜在应用包括解决计算上难以解决的微分方程和提高机器学习的速度。决定 QLS 求解器效率的一个基本参数是 κ,即系数矩阵 A 的条件数,因为自从 QLS 问题诞生以来,我们就知道,在最坏情况下,运行时间至少与 κ 呈线性关系 [1]。然而,对于正定矩阵的情况,经典算法可以求解线性系统,运行时间扩展为 √κ,与不确定的情况相比,这是一个二次改进。因此,很自然地会问 QLS 求解器是否可以获得类似的改进。在本文中,我们给出了否定的答案,表明当 A 为正定时,求解 QLS 也需要与 κ 呈线性关系的运行时间。然后,我们确定了可以规避此下限的正定 QLS 的广泛类别,并提出了两种新的量子算法,其特点是 κ 的二次加速:第一种基于有效实现 A − 1 的矩阵块编码,第二种构建形式为 A = LL † 的分解来预处理系统。这些方法适用范围广泛,并且都允许有效地解决 BQP 完全问题。