对阿尔茨海默氏病性别差异的研究越来越被认为是研究和临床发展的关键优先事项。患有唐氏综合症的人是最大的人口,与阿尔茨海默氏病有遗传联系(在第七个十年中> 90%)。然而,在这些个体中,尚未对阿尔茨海默氏病表现的性别差异进行全面研究,这些人是预防性临床试验的关键候选者。在这项对628名唐氏综合症的成年人[46%女性,44.4(34.6; 50.7)年]的双中心横断面研究中,我们比较了阿尔茨海默氏病的患病率,以及认知能力的结果以及跨年龄和性别的(n)生物标志物。参与者是从巴塞罗那,西班牙的一项基于人群的健康计划中招募的,以及通过为英格兰和苏格兰智障人士提供的服务招募的便利样本。他们接受了剑桥认知检查的评估,对唐氏综合症的老年人进行了认知检查,修饰的提示召回测试以及脑淀粉样变性的测定(CSF淀粉样蛋白β42 / 40和淀粉样蛋白淀粉样蛋白PET),TAU病理学,CSF和血浆磷酸化和plasma磷酸化 - tau181和neurofgenerals(csf and plasma phosmma and neurofgenerals)(CSF)光,二氧,氟葡萄糖-PET和MRI)。我们使用了局部估计的SCAT Terplot平滑模型来比较女性与男性的年龄以及载脂蛋白ɛ4 Carliership的生物标志物变化的轨迹。我们的工作显示出类似的患病率,诊断时的年龄和性别唐氏综合症评分的老年人的剑桥认知检查,但与女性相比,男性显示出45岁的改性提示召回测试评分较低。在(n)生物标志物中在男性和女性中是可比的。在考虑载脂蛋白ɛ4时,与女性非携带者相比,雌性4载体在诊断时显示出3年的年龄(50.5对53.2岁,P = 0.01)。在男性中没有看到这种差异(52.2对52.5岁,p = 0.76)。考虑性,载脂蛋白ɛ4和生物标志物的探索性分析表明,女性ɛ4载体倾向于表现出较低的CSF淀粉样蛋白β42/淀粉样β40比40比例,并且与没有此等位基因的女性相比,女性与女性相处量较低。这项工作表明,在唐氏综合症的成年人中,生物学不影响阿尔茨海默氏病的临床和生物标志物。考虑载脂蛋白ɛ4单倍型,特别是在女性中,对于考虑该人群的临床研究和临床试验可能很重要。考虑,报告和发布性别分层的数据,即使没有发现性别差异,也是帮助推进精确医学的核心。
摘要。covid-19是由SARS-COV-2引起的急性疾病,具有咳嗽,发烧,不适,头痛和厌食等初始临床症状。进入细胞后,Corona病毒(COV)通过吲哚胺2,3-二氧酶(IDO1)非依赖性机制激活芳基碳氢化合物受体(AHR),绕过IDO1-KYNURENINE-AHR途径。IDO1-Kynurenine-AHR信号通路被多种病毒,微生物和寄生病原体使用来激活AHR并建立感染。AHR通过IDO1-AHR-IDO1阳性反馈回路延长病原体引起的激活来增强自己的活性。通过COV直接激活AHR会诱导多样化的AHR依赖性下游效应子的直接和同时上调,这反过来又导致了“全身性AHR激活综合症”(SAAS)(SAAS)(SAAS)组成,由侵袭,动脉症和肉毒杆菌,多个器官和多个器官造成了多个病毒,并导致多发性疾病。COV激活AHR可能会导致各种表型疾病的图片,具体取决于感染后的时间,整体健康状况,荷尔蒙平衡,年龄,性别,合并症,以及调节AHR的饮食和环境因素。 我们假设消除已知上调AHR的因素,或实施已知的下调AHR的措施,应降低感染的严重程度。 尽管目前缺乏选择性下调AHR和IDO1的疗法,但临床用途(例如地塞米松)的药物可能会下调AHR和IDO1基因,因为钙化三醇/维生素D 3可能下降了AHR基因,AHR基因和TOCOPHEROL/VITIMAL/VITIAMIN E EE可能会降低IDO的IDO1 Gene。COV激活AHR可能会导致各种表型疾病的图片,具体取决于感染后的时间,整体健康状况,荷尔蒙平衡,年龄,性别,合并症,以及调节AHR的饮食和环境因素。我们假设消除已知上调AHR的因素,或实施已知的下调AHR的措施,应降低感染的严重程度。尽管目前缺乏选择性下调AHR和IDO1的疗法,但临床用途(例如地塞米松)的药物可能会下调AHR和IDO1基因,因为钙化三醇/维生素D 3可能下降了AHR基因,AHR基因和TOCOPHEROL/VITIMAL/VITIAMIN E EE可能会降低IDO的IDO1 Gene。应接受钙化三醇的补充,并在预防COV感染的前瞻性试验中进行测试,而托克希醇也应进行,而在介入试验中可以尝试地塞米松。由于缺乏体育锻炼会通过IDO1-KYNURENINE-AHR信号通路激活AHR,从而增加了感染的风险,因此应在隔离区进行体育锻炼,并在大流行期间在家中居住。了解哪些因素影响AHR和IDO1的基因表达可能有助于设计疗法,以预防和治疗患有COVID-19的人。
间充质基质细胞(MSC)疗法对肾脏移植引起了显着兴趣。MSC治疗已在几种临床研究环境中进行了研究,无论是诱导疗法,急性排斥反应或支持维持治疗,允许断奶以断奶的免疫抑制药物(1-5)。在肾脏移植的情况下,对于大多数临床研究,已应用自体MSC治疗(3,5-7)。但是,由于制造MSC产品需要数周的时间,因此在临床环境中使用“现成”同种异体MSC更为可行。在海王星研究中,移植后6个月注入同种异体MSC(8)。在这项1B研究中,选择第三方MSC不具有反复的人白细胞抗原(HLA)与肾脏供体的不匹配,以最大程度地降低抗Donor免疫反应的风险。这项研究证明了HLA选择的第三方MSC在肾脏移植受者中输注的安全性与输注后他克莫司龙槽水平较低(MSC IFFUSION 6.1(±1.7)ng/mL相比,与MSC Iffusion 3.0(±0.9)Ng/ml相比)。MSC被认为可以促进移植后的免疫耐受性,并具有免疫调节和抗炎性弹药特性(4、9、10)。但是,MSC治疗的作用机理仍未完全阐明。临床前鼠研究表明,潜在的局部作用机理不太可能是由于大多数MSC在肺的微脉管系统中积累,并且在输注后几个小时内无法检测到(11,12)。Dazzi等人小组的鼠类研究。几项研究表明,旁分泌作用因子(例如细胞因子,生长因子和免疫调节蛋白)的分泌(13-16)。另一种建议的作用机理是MSC在肺中被单核细胞吞噬,并且这些单核细胞在MSC的免疫调节作用的介导,分布和传播中起重要作用(17)。确定输注后不久将MSC降解(10)。此外,他们发现凋亡过程对于MSC的免疫调节作用至关重要。假定这部分取决于吞噬凋亡MSC后的吞噬细胞衍生的吲哚胺2,3-二氧酶(IDO)活性。尽管有这些临床前数据,但在临床环境中输注时MSC的细胞死亡证明很少。最近,无细胞的DNA(CFDNA)已被鉴定为固体器官移植中排斥反应的有趣生物标志物(18)。CFDNA的存在部分是由于主动分泌,但最重要的来源是细胞经历细胞凋亡或坏死。因此,供体衍生的CFDNA可以用作细胞损伤和细胞死亡的读数,并作为移植排斥的间接度量(19-21)。在2017年,发表了DART试验的结果(22)。在这项研究中,肾移植后测量了供体衍生的无细胞DNA(DD-CFDNA),并用作
GSK864(IDH1I)和DNA破坏特工Olaparib(OLAP)或顺铂(CIS)单独或合并。%,并将其标准化为对照。d)在谷氨酰胺饥饿的条件下培养了指定的CCNE1-低(橙色)和 - 高(紫色)同源细胞,并单独或单独或单独或合并用DNA损害剂Olaparib(OLAP)或顺铂(Cisplatin(Cis)处理。%的细胞,并将其标准化为媒介物对照。e)将IP基因细胞注射到免疫功能低下的雌性小鼠(n = 8/组)中。表达空载体(ev)=橙色的单元格;表达CCNE1(CCNE1)=紫色的细胞。单独或组合使用媒介物,IDH1抑制剂GSK864(IDH1I)和Olaparib(OLAP)处理小鼠。在端点,通过计算腹膜肿瘤结节来计算肿瘤负担。f)仅用IDH1抑制剂GSK864(IDH1I)处理指示的CCNE1高细胞,单独使用DNA破坏药物Olaparib(OLAP)或顺铂(CIS)(CIS)(cis)(黄色)(黄色)(黄色)(黄色),并与细胞渗透性的A kg(绿色)或柠檬酸盐(蓝色)结合使用。%,并将其标准化为对照。g)在谷氨酰胺饥饿条件下培养了指定的CCNE1高细胞,并用DNA损伤剂Olaparib(OLAP)或顺铂(CIS)(CIS)(CIS)(黄色)和可渗透的细胞渗透kg(绿色)处理。%的细胞,并将其标准化为媒介物对照。h)依赖性二氧酶CRISPR KO屏幕的示意图。i)CRISPR KO屏幕的分析。所有图表示平均值±SD。显示为Log2折叠分数(CCNE1 + Olaparib vs. CCNE1)与(EV + Olaparib vs.EV)中的负分数的变化。J)在两个CCNE1高细胞系中5个负富集基因的Venn图。k)用SHGFP(Shcont-紫色)或两个靶向TMLHE的独立shRNA(SHTMLHE#1-浅蓝色,浅蓝色,SHTMLHE#2-深蓝色)转导指示的CCNE1高细胞,并用DNA损害剂Olaparib(Olap)用Cell-Cell-clip-carn的dna损害剂处理(la)或l-CARNIT(l-CARNIT)。%的细胞,并将其标准化为媒介物对照。l)单独使用肉碱合成抑制剂(Mildro)或单独使用DNA损伤剂Olaparib(OLAP)(紫色)和组合(黄色)处理指示的CCNE1高细胞。组合处理的细胞用可渗透的细胞A kg(绿色)或L- carnitine(L-Carn; Maroon)补充。%的细胞,并将其标准化为媒介物对照。m)用IDH1抑制剂GSK864(IDH1I)和单独的DNA损伤剂Olaparib(OLAP)(紫色)和组合(黄色)处理指示的CCNE1高细胞。组合处理的细胞用L-肉碱(L-Carn; Maroon)补充。%的细胞,并将其标准化为媒介物对照。n)在谷氨酰胺饥饿条件下(紫色)培养指示的CCNE1-高细胞,并单独用DNA损伤剂Olaparib(OLAP)(黄色)或补充L-Carnitine(L-Carn; Ma-Roon)。%,并将其标准化为对照。**** p <0.005,ns =不显着o)kg是tmlhe和carnitine上游的示意图。(A-D,F)显示的是来自每个等源性细胞系对中至少3个独立实验的代表性数据。(G,K-N)是来自每个等源性细胞系对中2个独立实验的代表性数据。
Structural and spectroscopic correlation in barium-boro-tellurite glass hosts: effects of Dy 2 O 3 doping S. F. Hathot a,* , B. M. Al Dabbagh a , H. Aboud b a Applied Science Dep, University of Technology, Baghdad, Iraq b Faculty of science- physics Dep, college of Science, Al-Mustansiriya University, Iraq In this study, a series of通过熔融液化方法制成的含有不同浓度的Dy 2 O 3掺杂(0至1.25 mol%)的钡 - 硼酸盐玻璃宿主是不同的。进行了一项研究,以研究Dy 2 O 3掺杂剂如何影响玻璃的物理和光谱性状。原材料包括氧化钡(BAO),泰他二氧化氢(TEO 2),氧化硼(B 2 O 3)和氧化钠(DY 2 O 3),用于生产这些眼镜。XRD模式显示出宽阔的驼峰和远程周期性晶格排列,表明它们的性质。拉曼光谱分析显示了各种振动模式,其中最强烈的带是由300 cm-1和450 cm-1在TE – O-TE内部链链桥的对称拉伸振动模式对应的最强烈的带引起的。750 cm-1处的峰值是由于TEO 4和TE-O-TE振动模式引起的。光条间隙能的值从3.155降低至2.1894 eV,然后在较高的DY 2 O 3水平(0.75至1.25 mol%)下增加。在390、424、452、452、750、797、895和1092 nm之间观察到0.25至1.25 mol%之间的Div>在0.25至1.25 mol%之间观察到。 使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。。使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。将玻璃折射率从2.3563升至2.6584,然后在较高的DY 2 O 3含量下降低,这主要是由于玻璃基质中产生了更多的桥接氧(BO)。使用Lorentz-lorenz方程计算得出的玻璃电子极化率和氧化离子极化性的值随着DY 2 O 3含量的上升幅度下降,这归因于较少的非桥接氧(NBO)的存在。此外,随着DY +3水平的增加,光传递增加并减少了反射损失。1以下的金属化参数的值证明了制备样品的真实非晶性质。所有玻璃杯均揭示了由于4F9/2→6H15/2而引起的蓝色和黄色光致发光发射峰,分别在DY 3+中分别在4f9/2→6H15/2和4F9/2→6H13/2过渡中。所提出的玻璃成分可能有益于固态激光器的发展。(2023年11月23日收到; 2024年2月22日接受)关键词:DY 2 O 3掺杂,拉曼光谱,结构,吸收,排放1.引言由Teo 2作为宿主制成的泰瑞尔玻璃系统在过去几年中一直引起人们的兴趣,因为与氧化物玻璃杯相比,化学和物理特性增强了。这些玻璃具有较大的热电常数,红外透射率,介电常数和折射率的值。低声子的能量截止点和熔点;非常高的稀土离子溶解度[1]。基于tellute的玻璃也可以用各种稀土元素掺杂,以获得改进的光学特性,这些光学特性是由稀土离子中电子过渡产生的。当将稀土离子添加到洁牙液玻璃中时,它们可能会导致网络结构的变化,包括形成稀土氧化物簇或具有氧原子的稀土离子的配位2 [2,3]。可以通过结构变化来修改此类玻璃的光谱属性,表明这些特性之间由稀土元素控制的这些特性之间存在很强的相关性。带有稀土离子的tellurite玻璃
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。