与传统抗生素不同,由 2D 纳米材料制成的抗菌剂可以以较少的量使用,从而降低副作用和耐药性问题的风险。由于 MoS 2 等 TMD 具有移动性、稳定性、价格合理、与身体相容性、多功能性和易于生产等特点,它们在医学领域对抗癌症和细菌方面显示出良好的前景 [11]。研究人员正在探索 MoS 2 的各种应用,包括增强性能、医疗用途和电子产品。虽然 MoS 2 纳米材料具有显着的属性,但如果不进行适当修改,则在医学中使用它们会受到限制。通过加入其他功能来增强 MoS 2 可以扩展其潜在应用。此外,将 MoS 2 与其他抗菌材料结合可以大大提高其有效性 [12]。
最近,我们考虑了与石墨相比,石墨烯和氧化石墨烯的拉曼光谱如何出现。在评论中,我们提到了Breit-Wigner-Fano(BWF)线的形状,Ferrari和Robertson,2000年被告知代表碳质材料的G带。BWF是一种用于考虑不对称和FANO共振的修改后的洛伦兹函数(请参阅Miroshnichenko等,2010,介绍Fano理论和模型)。例如,Hasdeo等,2014,使用“石墨烯拉曼光谱中的Breit-Wigner-Fano线形状”,因为“声子光谱与电子孔对激发光谱之间的干扰效果”(Hasdeo等人,2014年,Hasdeo hasde-hole taime coptation Spectra之间)。让我们强调,也可以通过使用分裂的洛伦兹函数来获得不对称性。表征BWF函数的内容是“形状共振”的存在,如Bianconi,2003年的图2所示,或者如其他地方给出的(Tanwar等,2022),抗抗抗耐药性的“蘸酱”。
我们将外延的概念扩展到了“扭曲外观”的制度,并在两个受相对方向影响的两个底物之间的表层晶体取向。,我们在两个去角质的六角钼二硫化物(MOS 2)的两个底物之间退火纳米厚的金(AU)纳米颗粒,其基础平面的不同方向具有相互扭曲的角度,范围为0°至60°。透射电子显微镜研究表明,当双层的扭曲角度很小(<〜7°)时,AU在顶部和底部MOS 2之间对齐。对于较大的扭曲角,Au只有一个小的不良对象,而底部MOS 2则与双层MOS 2的扭曲角差异大致变化。四维扫描透射电子显微镜分析进一步揭示了与扭曲的外交相关的au纳米虫的周期性应变变化(<|±0.5%|),与两个MOS 2扭曲层的Moiré注册表一致。e
图 2. (a) 机械剥离的 MoS 2 的光学显微照片,其中单层区域突出显示。(b) 沉积 1 nm CoPc 之前和之后单层 MoS 2 的拉曼光谱。A 1g 和 E 2g 峰之间的间隔约为 19 cm -1 ,表明为单层 MoS 2 。1100 – 1500 cm -1 范围内的拉曼模式是 CoPc 的特征。(c) 机械剥离的 MoS 2 和含有 1 nm CoPc 的 MoS 2 的 300 K PL 光谱。A 激子和相关的三子在 675 nm 处很突出,由于 B 激子的存在,可以看到一个小的高能肩。(d) MoS 2 和含有 1 nm CoPc 的 MoS 2 的 10 K 光致发光。在此温度下,除了 660 nm 和 600 nm 处的 A 和 B 激子外,MoS 2 缺陷发射在 700 nm 处也变得明显,
1 无机和分析化学,2 制药,3 无机和分析化学,维沙卡帕特南,530003,印度。摘要:纳米材料的生产和应用研究已经开展多年。由于基本元素钼和另一种化学元素硫(氧族元素)的性质不同,它们具有各种吸引人的特性。尽管我们对二硫化钼纳米粒子的成核、发展和结构所涉及的过程以及其生物特性和催化活性背后的机制的理解取得了重大进展,但仍存在许多困难。纳米材料的进化有助于在纳米级改变材料的形状和结构,以实现所需的应用。为了区分半导体相和金属相,人们开发了准二维 (Q2D) 材料,例如石墨烯和 2D 蜂窝硅,以及层状过渡金属二硫属化物 (TMD),例如二硫化钼 (MoS 2 ) (WS2)。因为它在从块体转变为纳米级时能够表现出广泛的特性。其中,二硫化钼 (MoS 2 ) 是一种有趣的多功能材料。由于其 (1.9 eV) 直线带隙值,单片 MoS 2 无疑能够实现后硅电子学。在室温下,它具有高开/关电流比和大约 200 cm 2 (Vs -1 ) 的迁移率。MoS 2 的结构也是其两个特性的决定因素。它对气体传感很有用,因为它具有六边形结构,其中 S-Mo-S 原子层共价连接,相邻的 MoS 2 层之间有范德华连接。由于 MoS 2 具有良好的特性,因此具有多种实际应用。我们力求在这篇综述中涵盖当前的合成技术及其在 2D MoS 2 材料中的应用。关键词:过渡金属二硫化物 (TMD)、二硫化钼 (MoS 2 )、二硫化钼材料的合成技术以及二硫化钼的应用。
二硫族化合物 MX 2 (过渡金属 M 和硫族元素 X) 是范德华耦合的层状准二维材料,具有可定制的电子特性,因此在器件、气体传感器和化学过程方面具有重要意义。[1] 其基础是多相和堆叠顺序的存在,以及作为主体材料进行掺杂和插层的能力。[2] 二硫族化合物辉钼矿 (MoS 2 ) 是一种热力学稳定的块体晶体,间接带隙为 1.2 至 1.3 eV。[3–5] 其晶体结构由堆叠的 S–Mo–S 片组成,具有 A–B–A 堆叠的三角棱柱对称性,其中顶部和底部 S 平面中的硫原子占据等效的垂直位置。[3] S–Mo–S 片之间的距离为 6.5 Å。 [6] 从间接带隙块体 2H-MoS 2 到单层,带隙逐渐加宽,单层 MoS 2 的直接带隙达到 1.9 eV。[5] 半导体 2H-MoS 2 相支持通过化学和物理方法诱导的 n 型和 p 型掺杂。[7–11] 据报道,插层、电子、光学和热激发以及机械应变和层取向。[3,12–16] 将 S-Mo-S 层中一个 S 平面的硫原子滑动 1.82 Å 会导致单层内的 ABC 堆积,其中硫原子占据 2H 相六边形的中心,从而产生金属 1T-MoS 2 相。 [3,17] 金属 1T-MoS 2 相可以通过电子注入来稳定,例如用电子显微镜直接注入电子或通过吸附的锂原子提供电子。[12,17–21]