藏红花是番红花L.的干燥污名,是iridaceae家族的多年生球(7)。在伊朗,它是最昂贵的香料,称为“红金”(8)。由藏红花污名组成的化合物和成分包括鳄鱼,picrocrococin,crocetin和safranal,以及负责藏红花红色颜色的鳄鱼(9)。Based on the results of studies in animals and clinical trials, saffron and crocin exert significant pharmacological properties, such as hypoglycemic ( 10 ), hypolipidemic ( 11 ), antioxidant ( 12 ), anti-inflammatory ( 13 ), anticarcinogenic ( 14 ), neuroprotective ( 15 ), anti-depressive ( 16 ), and cardioprotective ( 17 ) activities, so it may have beneficial effects在糖尿病,动脉粥样硬化,癌症,神经系统疾病,抑郁和心血管疾病上。归因于抗炎和抗氧化活性,藏红花被认为可以改善代谢性疾病(18)。的确,多年来,多种临床前证据和初步研究以及临床试验表明,藏红花及其成分具有抗糖尿病作用。在研究摩洛哥和意大利藏红花提取物的一项体外研究中,这两种提取物都通过抑制2,2-二苯基-1-铅烯基氢唑(DPPH)而具有强大的抗氧化活性。使用α-淀粉酶和α-葡萄糖苷酶抑制测定法评估了抗糖尿病活性,这表明这些化合物具有降血糖作用。此外,椎间盘扩散方法表明,这两种提取物都对细菌有效(19)。对40个糖尿病大鼠的另一项实验设计为4周,旨在评估藏红花花瓣和锦缎玫瑰花瓣对炎症因子,禁食血浆葡萄糖(FPG),血红蛋白A1C(HBA1C)和脂质谱的影响。在藏红花花瓣组中,类似胰岛素样生长因子1(IGF-1),高敏C反应蛋白(HS-CRP),HBA1C,甘油三酸酯增加,甘油三酸酯增加,而FPG降低,而FPG降低,这将共同反映了蓝晶对改善Biochemical标记状态的益处(20)。尽管以前的荟萃分析报告了藏红花对血糖参数的影响,但结果不一致,并且没有一个集中在整个DM种群上(21-26)。由于缺乏对迄今为止发表的相关随机临床试验(RCT)的全面荟萃分析评估,因此我们进行了系统的综述和荟萃分析,以确定补充藏红花对糖尿病患者血糖指数的影响。
摘要:可食用的灰色牡蛎蘑菇,胸膜sajor-caju,β(1,3),(1,6)葡聚糖具有广泛的生物学活性,包括抗炎性,抗炎症,抗微生物和抗氧化剂。然而,其生物学活性受到高分子重量产生的低水溶性的限制。我们先前的研究表明,使用HEVEAβ-1,3-葡萄糖酶同工酶对灰色牡蛎蘑菇β-葡聚糖进行酶水解,可获得较低的分子量和较高的水溶性,Pleurotus sajor-sajor-caju-caju葡萄糖醇乙醇(PS-GOS)。此外,PS-GOS可能通过增强成骨细胞 - 骨形成来减少骨质疏松症,而其对骨细胞 - 骨的吸收的影响仍然未知。因此,我们的研究调查了PS-GOS在核因子Kappa-B配体(RANKL)诱导的骨化前肿瘤生成264.7细胞中核因子Kappa-B配体(RANKL)诱导的破骨细胞发生上的调节活性和潜在机制。PS-GOS在RAW 264.7细胞上的细胞细胞毒性由3-(4,5-二甲基噻唑-2-基)确定-2,5-二苯基-2H-2H-四唑溴化物(MTT)测定法,其对骨酸磷酸磷酸磷酸化酶(Trapsantase)(Trappase)的影响及其对骨质分化的影响。另外,通过坑形成测定,检测到其对破骨细胞骨敏感能力的影响。通过定量逆转录酶聚合酶链反应(QRT-PCR),Western blot和免疫流效来评估破骨细胞生成相关的因子。这些发现表明PS-GOS可能是作为骨代谢疾病的有效天然剂而有益的。结果表明,PS-GOS是无毒的,并有明显地抑制成熟破骨细胞多核细胞的形成及其吸收活性,通过减少诱捕阳性细胞的数量和PIT形成区域的数量,以剂量依赖性方式。此外,PS-GOS还减轻了活化B细胞的核因子Kappa轻链增强剂的核因子p65(NFκB-P65)的表达及其随后的主骨细胞调节剂,包括活化的T细胞C1(NFATC1)的核因子和FOS Proto proto proto-cogen-(CFOS)通过NF-NF-κB-B-B-κB-B b b b b b b b b。此外,PS-GOS明显抑制了等级表达,它是许多与破骨构成相关的级联反应的初始发射器,并抑制了蛋白水解酶,包括TRAP,基质金属肽酶9(MMP-9)和Cathepsin K(CTK)。
最近,由于它们在不同的领域中的应用,例如在催化剂,超级电容器,电容器,电池和其他储能系统中,因此高级材料引起了极大的兴趣[1-3]。21世纪的许多前进技术,例如电动汽车(和混合动力),便携式电子设备和可再生能源系统,推动了对高性能储能系统的需求[4]。对可加工,轻巧,灵活的储能材料的需求不断增长,这激发了学术界和行业的研究人员开发和制造新材料,这些材料可根据目标应用程序(包括环境应用程序)提供出色的特性[5,6]。基于高级材料在几种应用中的不同潜力的基础上,该特刊旨在介绍新的高级材料中最新的最新技术,以解决研究人员在此领域中针对许多应用程序的各种具有挑战性的问题,尤其是用于存储能源。在本期中,我们提出了12篇论文,其中包括一项出色的评论“可持续生物量活性碳作为电池和超级电容器的电极 - 一个迷你审查”和一篇沟通文章。在本期特刊中,我们介绍了最新的进步,这些进步涉及活跃研究人员在创新的高级材料和混合材料方面的新颖和最先进的主题,不仅涉及它们的合成,准备和表征,而且尤其是专注于具有出色表现的此类材料的应用。本期特刊已针对不同学科的读者。全面和基础研究已在本期特刊中发表,剑桥大学研究人员的第一个贡献为“碳基于黑色 - 盖烯的多模式 - 二苯基二甲基烯纳米复合材料的非等热结晶动力学”。在这项工作中,Ahmad等人。报告了基于结晶动力学的碳黑磷酸增强高密度聚乙烯(HDPE)复合材料的发现[7]。在这项工作中,使用非等温条件的纤维(碳黑 /石墨烯)从0.1到5 wt。%的不同比例制备了不同类型的复合材料。发现石墨烯含量以及冷却速率对结晶行为(PE-G纳米复合材料的非等温度)产生了很大的影响。发现,随着选定加固的冷却速率降低(例如,石墨烯含量),PE-G相对峰结晶温度得到了提高。以指定的冷却速率,发现随着石墨烯浓度的增强以及成核机制的转化,它会逐渐增加。从研究中得出结论,聚乙烯(PE)-G纳米复合材料的非等温结晶行为在很大程度上取决于石墨烯的含量和冷却速率。Cabello等人在他们的工作中探索了MGCL 2作为电解质的用法,以增加Li 4 Ti 5 O 12(LTO)电化学性能,作为下一代MG电池中新型阴极[8]。
问卷调查并测量了婴儿的体重。使用 FRAP(铁还原抗氧化能力)测定法测定成熟乳样品的总抗氧化能力 (TAC),并使用 1,1-二苯基-2-苦基肼 (DPPH) 自由基评估自由基清除活性。结果:本研究最终样本量为 75 名哺乳期妇女。确定了两种主要的基本饮食,即油棕籽汁酱煮熟的米饭 (R-SG) 和配茄子酱的芭蕉和木薯煮熟的糊状混合物 (F-SAU),分别涉及 50 名和 25 名哺乳期妇女。对于 R-SG 和 F-SAU 饮食,在产后第 45 天和第 105 天收集的牛奶中 TAC 水平显著增加(P < .05),而在同一时期 DPPH 自由基抑制百分比没有显著差异。此外,接受 R-SG 饮食和 F-SAU 饮食的妇女以及产后 45 天和 105 天的母乳中的 TAC 和抗自由基活性在统计学上是可比的 ( P > .05)。另外,遵循这些饮食的妇女母乳中的 TAC 和抗自由基活性与产后 105 天新生儿的体重相关。结论:根据我们的研究结果,得出结论,R-SG 饮食和 F-SAU 饮食的妇女母乳中的抗氧化活性是可比的。关键词:抗氧化剂;母乳;饮食;科特迪瓦。1. 引言氧气对所有需氧细胞的生命都至关重要,因为它们利用氧气来产生能量。在这个氧化呼吸过程中,线粒体产生三磷酸腺苷 (ATP) 后会产生自由基。这些自由基通常是活性氧 (ROS) 或活性氮 (RNS) [1,2]。这些 ROS 或 RNS 通常在生物体中以较低但可测量的浓度产生,并且可能在细胞内信号传导和防御微生物等过程中有益甚至至关重要。此外,ROS 还参与细胞生长、分化、进展和死亡 [3]。另一方面,当它们过量产生时,它们会诱发氧化应激,从而导致细胞和组织损伤 [4]。出生时,新生儿暴露于相对高氧的宫外环境中,这是由于氧的生物利用度增加导致的,这大大增强了 ROS 的生成。因此,人类婴儿由于难以适应周围的氧气而处于氧化应激之下,尤其是由于新生儿时期的抗氧化防御机制尚未发育良好。人们认为氧化应激与许多新生儿疾病的发病机制有关,例如坏死性小肠结肠炎、支气管肺发育不良、肾衰竭、早产儿视网膜病变和脑室内出血 [5-7]。作为回应,哺乳动物细胞已经发展出抗氧化防御机制,以防止 ROS 和 RNS 引起的损伤。母乳被认为是婴儿生长发育的理想营养来源
在聚合物中,在单个水平和链之间的链条折叠和聚集之间的竞争可以确定此类材料的机械,热和导电性能。了解折叠和聚集的相互作用为开发和发现具有量身定制性能和功能的聚合物材料提供了重要的机会。对于常规共价聚合物的非共价对应物也是如此,即,超分子聚合物(SPS)。sps有望用作新型刺激响应性聚合物材料的实际应用。大多数SPS具有单调的一维线性结构,该结构倾向于引起链链聚集,但是很少有SPS的报道可以通过主链折叠形成各种高阶结构。既展示了内部折叠和链链聚合的SP的开发,将为创建新型SP材料提供新的指南,其特性可以由高阶结构控制。最近发表在2024年7月25日在美国化学学会杂志上发表的一项研究报告了一种新的折叠SP,该SP自发进行链链聚集并转化为结晶骨料。借助原子力显微镜(AFM),研究小组证明了展开与聚集之间的关系。这项研究是由Chiba University的Shiki Yagai教授领导的,他是Chiba University科学与工程研究生院的博士课程学生Kenta Tamaki,是第一作者。 “最初,我们发现了一种单体结构,该结构以螺旋形形状聚合。这次,我们部分改变了驱动单体聚合以研究单体聚合物关系的单位结构。令我们惊讶的是,我们观察到了一种现象,螺旋自发地展开,而不同的链条捆在一起。然后,我们合并了一个可相关的分子,以便通过光线通过“任意时机”出现这种“自发”现象,这为我们的研究提供了背景,” Yagai教授说,这项研究背后的灵感。为设计新系统,该团队选择了可扭曲的二苯基和光反应偶氮苯单元作为核心,将其自组装到所需的SPS中。最初以折叠状态形成的SP慢慢地以内部分子顺序进行重排超过半天,并汇总到结晶状态。将偶氮苯单元纳入SPS导致了光诱导的展开,这通过松动折叠环之间的内部稳定来显着加速了这一过程。研究人员观察到,当将折叠的SP溶液保持在20 O C下几天时,聚合物会自发进行结构过渡并沉淀。使用AFM可视化沉淀物时,他们观察到了独特的中间状态,在通往统一的直纤维结构的途中,似乎是弯曲链的结合。这个有趣的图像使研究人员想起了蛋白质折叠不折叠的生物系统中经常观察到的链链聚集,从而导致淀粉样蛋白纤维形成。此外,该团队揭示了这种结构转型背后的原因。这包括由于双苯基单元的构象变化而导致的分子内顺序
季节性的p-葡萄糖酸和抗菌活性的季节性变化。Pharm Biol 46:889-893。Karamat,F,Olry,A,Munakata,R等。 (2014)香豆素 - 特定的pren- yltransferase催化了欧洲裔弗拉诺科·马林形成的关键生物合成反应。 工厂J 77:627-638。 Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。 分子24:796。 li,H,Ban,Z,Qin,H等。 (2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。 植物生理学167:650-659。 Luo,X,Reiter,MA,D'Espaux,L等。 (2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。 自然567:123-126。 luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。 Proc Natl Acad Sci USA 116:10749-10756。 MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Karamat,F,Olry,A,Munakata,R等。(2014)香豆素 - 特定的pren- yltransferase催化了欧洲裔弗拉诺科·马林形成的关键生物合成反应。工厂J 77:627-638。Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。 分子24:796。 li,H,Ban,Z,Qin,H等。 (2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。 植物生理学167:650-659。 Luo,X,Reiter,MA,D'Espaux,L等。 (2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。 自然567:123-126。 luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。 Proc Natl Acad Sci USA 116:10749-10756。 MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。分子24:796。li,H,Ban,Z,Qin,H等。(2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。植物生理学167:650-659。Luo,X,Reiter,MA,D'Espaux,L等。(2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。自然567:123-126。luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。Proc Natl Acad Sci USA 116:10749-10756。MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。MA,J,GU,Y,Marsafari,M等。(2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。J Ind Microbiol Biotechnol 47:845-862。mori,T,(2020)芳族前转移酶的酶学研究。J Nat Med 74:501-512。Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Munakata,R,Inoue,T,Koeduka,T等。(2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。植物生理学166:80-90。社区生物2:384。Munakata,R,Olry,A,Takemura,T等。 (2021)UBIA超家族蛋白的平行演化为植物中的芳族O-前转移酶。 Proc Natl Acad Sci USA 118:E2022294118。 Munakata,R,Takemura,T,Tatsumi,K等。 (2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。 村上,A,Kuki,W,Takahashi,Y等。 (1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。 JPN J Cancer Res 88:443-452。 Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Munakata,R,Olry,A,Takemura,T等。(2021)UBIA超家族蛋白的平行演化为植物中的芳族O-前转移酶。Proc Natl Acad Sci USA 118:E2022294118。Munakata,R,Takemura,T,Tatsumi,K等。 (2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。 村上,A,Kuki,W,Takahashi,Y等。 (1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。 JPN J Cancer Res 88:443-452。 Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Munakata,R,Takemura,T,Tatsumi,K等。(2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。村上,A,Kuki,W,Takahashi,Y等。(1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。JPN J Cancer Res 88:443-452。Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Nishikawa,S,Aoyama,H,Kamiya,M等。(2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -
1,2化学,自然科学研究所,萨卡里亚大学,Esentepe Campus,54187,萨卡里亚,土耳其摘要:这项工作旨在评估Baku中生于Baku的各种植物的抗氧化活性(Maculatum,Pinus Eldarica和Ficus benghalensis)。抗氧化剂是生物活性化合物,可通过对抗氧化应激来预防细胞损伤,并在预防许多慢性疾病(包括心血管疾病,癌症和神经退行性疾病)中发挥重要作用。植物的抗氧化潜力与它们所含的酚类化合物和黄酮类似物密切相关。在研究范围内,选择了三种不同的植物物种(Maculatum,Pinus eldarica和ficus benghalensis)在巴库广泛分布,并使用乙醇制备了它们的提取物。为了评估抗氧化活性,应用了DPPH(2,2-二苯基-1-苯基氢羟基苯基)自由基清除活性测定法和库库还原抗氧化能力(CUPRAC)测定法。同时,总酚类和类黄酮含量是通过Folin-Ciocalteu和硝酸盐分光光度法确定的。由于分析,确定某些植物具有很高的抗氧化潜力,因此,它们在药理和功能性食品工业中具有很高的使用潜力。揭示了酚含量较高的植物提取物特别表现出更强的抗氧化作用。研究结果表明,巴库的当地植物资源可能是健康和食品行业的原材料的重要来源。这项研究可能为将来对当地植物物种的更详细的生化研究和对其治疗潜力的更广泛评估提供基础。同时,研究结果为进一步调查了各个工业领域的新天然抗氧化资源的应用可能性提供了有用的科学基础。关键字:抗氧化活性,念珠菌,ficus benghalensis,类黄酮,酚类,Pinus eldarica。引入氧化应激是由于体内自由基过度积累而发生的过程,而抗氧化剂防御系统无法中和这些自由基。这会损害细胞膜,蛋白质和DNA,增加患上各种慢性和退化性疾病的风险,例如心血管病理,癌症,糖尿病,神经退行性疾病以及早衰[1]。现代科学研究表明,饮食和生活方式的变化,尤其是富含天然抗氧化剂的食物的食用可以减少氧化应激的有害影响。因此,对天然抗氧化剂对人类健康的影响得到了广泛研究,重要的是找到新的天然植物抗氧化剂[2]。植物作为天然抗氧化剂的来源特别重要,因为它们含有酚类化合物,类黄酮,类胡萝卜素,维生素(维生素C和E)和其他生物活性成分。这些物质有助于中和自由基,具有抗炎作用并增强免疫系统。这种植物在生态和药理上都非常重要。因此,研究各种植物的抗氧化活性并评估其生物医学潜力非常重要。尤其是,对某些地理区域种植的当地植物植物物种的研究为这些植物在食品和制药行业中的广泛使用提供了科学基础,并揭示了其健康益处[3,4]。Eupatorium Maculatum是一种多年生草药,主要生长在湿地,河岸,沼泽和潮湿的草地,尤其是在北美东部和东南部地区。已经表明,某些植物的根和花朵富含类黄酮,萜类,生物碱和其他有益物质。美国原住民使用它来缓解诸如肿胀和发烧之类的疾病。还发现,念珠菌提取物可有效预防和治疗细菌感染,尤其是显示出良好的抗生素作用。maculatum也具有抗炎和镇痛作用。这些效果自古以来就可以很好地支持植物在民间医学中的使用[5,6]。Pinus Eldarica是一种属于Pinus物种的松树,自然地在高加索南部的山区地区,尤其是在阿塞拜疆的Eldar山脉中。该物种在生态和